
Automating Thought of Search: A Journey Towards Soundness and Completeness

Daniel Cao1, Michael Katz2, Harsha Kokel2, Kavitha Srinivas2, Shirin Sohrabi2

1 Cornell University
2 IBM Research

Abstract

Planning remains one of the last standing bastions for large
language models (LLMs), which now turn their attention to
search. Most of the literature uses the language models as
world models to define the search space, forgoing soundness
for the sake of flexibility. A recent work, Thought of Search
(ToS), proposed defining the search space with code, having
the language models produce that code. ToS requires a human
in the loop, collaboratively producing a sound successor func-
tion and goal test. The result, however, is worth the effort: all
the tested datasets were solved with 100% accuracy. At the
same time LLMs have demonstrated significant progress in
code generation and refinement for complex reasoning tasks.
In this work, we automate ToS (AutoToS), completely tak-
ing the human out of the loop of solving planning problems.
AutoToS guides the language model step by step towards
the generation of sound and complete search components,
through feedback from both generic and domain specific unit
tests. We achieve 100% accuracy, with minimal feedback iter-
ations, using LLMs of various sizes on all evaluated domains.

1 Introduction
Large language models have shown great promise across
countless domains and fields, especially as their architec-
tures become more advanced. Spurred by their abilities in
natural language tasks, several recent works have studied
AI planning in Large Language Models (LLMs) as a sub-
set of code generation and code refinement. The approaches
vary from giving a planning problem to an LLM and ask-
ing it to output an entire plan in a single call (Silver et al.
2022; Kambhampati et al. 2024a; Pallagani et al. 2022) to
asking an LLM to generate a planning model to be given to
an automated planner (Guan et al. 2023; Oswald et al. 2024;
Gestrin, Kuhlmann, and Seipp 2024). Between these two ex-
tremes, lies a body of work on using language models to plan
by performing a combinatorial search (Hao et al. 2023a; Yao
et al. 2023a; Besta et al. 2024; Sel et al. 2023). Among these,
Thought of Search (ToS) (Katz et al. 2024) stands out; it uses
the language models to define the search space for the entire
domain at once. It is done simply by soliciting two crucial
search components, successor function and goal test. These

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An overview of AutoToS.

components are then plugged into a standard search algo-
rithm, such as Breadth-First Search (BFS) or Depth-First
Search (DFS) (Cormen, Leiserson, and Rivest 1990).

ToS has an impressive accuracy of 100% on all tested
benchmarks and it produces a symbolic model whose sound-
ness and completeness can be verified. However, ToS has a
limitation - it requires a human expert in the loop, providing
a feedback to the model on the produced code. Our contri-
bution is precisely there. We automate the iterative feedback
and exception handling process through the use of unit tests
and printed debugging statements for use with few shot and
Chain of Thought (CoT) prompting (Brown et al. 2020; Wei
et al. 2022; Kojima et al. 2022), limiting the human expert
involvement with the language model. We test the search
components for soundness and completeness and provide
feedback to the model when a violation is detected. We use
a mixture of domain-independent and domain-specific tests,
based on a small number of held out instances.

We exemplify our proposed approach on five represen-
tative search problems from the recent literature and test
with a variety of large language models of different sizes.
Through automated feedback, we find that the accuracy
of the code generated by language models consistently in-
creases to reach 100% across all tested domains. We show
that the total number of calls to the language model is typ-
ically small, comparable to the results of ToS with human
feedback. In an ablation study, we justify the importance
of soundness and completeness feedback for obtaining the
highly accurate final code. Finally, we investigate the errors

ar
X

iv
:2

40
8.

11
32

6v
1

 [
cs

.A
I]

 2
1

A
ug

 2
02

4

in the code generated by the language models and find that
they differ significantly in error distribution.

2 Related Works
Planning with LLMs Recently, several works have lever-
aged LLMs for plan generation. Valmeekam et al. (2023b)
analyzed LLMs ability to generate plans for classical plan-
ning problems described in natural language. Raman et al.
(2022) generated task plans and used precondition errors
as feedback to revise the generated plan. In the same vein,
various works have used external verifiers or validators
as feedback for LLMs to generate better plans (Stechly,
Valmeekam, and Kambhampati 2024; Kambhampati et al.
2024b). Pallagani et al. (2023) investigate training ap-
proaches to improve plan generation abilities. All these
approaches use LLMs to solve one problem at a time–
essentially treating LLM as a policy. Another line of work
has tried to extract policies or generalized plans from LLMs.
Silver et al. (2024) synthesized generalized plans as Python
programs from LLMs for planning domains described in
a formal language (PDDL). Further, LLMs have also been
used to extract planning problems and models in formal lan-
guage from their natural language description. Liu et al.
(2023) used LLMs to translate natural language planning
problems to PDDL problems, and Zuo et al. (2024) pro-
posed a benchmark for such evaluating this ability while Xie
et al. (2023) use LLMs to translate natural language goals
to PDDL. Recently, Guan et al. (2023), Gestrin, Kuhlmann,
and Seipp (2024) and Oswald et al. (2024) leveraged LLMs
to convert natural language domain description to PDDL do-
mains. However, the LLM generated PDDL remains less re-
liable and difficult to evaluate.

Planning with LLMs using Search A burgeoning re-
search field utilizes LLM’s to conduct a search via struc-
tured prompting and feedback for planning and reasoning
problems. Hao et al. (2023a) used LLMs in the loop for
Monte Carlos Tree search by treating LLMs as world mod-
els to generate next state as well as treating them as reason-
ing agents to pick the next state to expand. Similarly, Tree
of Thoughts (Yao et al. 2023b) used LLMs to generate a
search tree—to expand each node in the search tree—and
also used LLMs for evaluating the choices and selecting the
next best state. Graph of Thoughts (Besta et al. 2024) mod-
eled LLM generated output as a graph instead of a tree and
reduces the number of LLM calls. Similar approaches with
integration to search are also proposed for interactive do-
mains (Zhou et al. 2023; Shinn et al. 2023). While these
approaches have shown some success, their significant re-
liance on LLMs for generating successors makes them not
only extremely inefficient but also very unreliable. Thought
of Search (ToS) (Katz et al. 2024), on the other hand, pro-
posed using LLMs to generate code for the successor and
goal functions for problems described with natural language.
Once these functions are available, any offline search al-
gorithm can be used to solve any problem in the domain.
This approach is significantly more efficient than approaches
which use LLMs in the loop during search. However, it re-
quires human expert for the feedback. Our work focuses on

alleviating the requirement of human in the loop feedback.

Code Generation with LLMs LLM’s abilities are rapidly
advancing in program synthesis. Various benchmarks have
been established to evaluate correctness of code gener-
ated by LLMs (Chen et al. 2021; Puri et al. 2021; Li,
Parsert, and Polgreen 2024), and subsequent approaches
have demonstrated human level performance on coding
benchmarks (Zhong, Wang, and Shang 2024; Muennighoff
et al. 2024). Chen et al. (2024) and Zhang et al. (2023) use
errors from execution as feedback to LLMs so they can re-
fine the code. Madaan et al. (2023), Gou et al. (2024) and
Huang et al. (2024) discussed the use of external verifies to
curate feedback for LLMs. Jiang, Wang, and Wang (2023)
introduced unit test results and error messages to LLMs.
Recently, LLMs code generation has also shown to help in
mathematical reasoning problems (Zhong, Wang, and Shang
2024). Inspired by successes in these works, we propose to
automate the feedback for ToS by using both generic and
domain-specific unit tests and validators.

3 Background
In this work we follow the notation of Katz, Moshkovich,
and Karpas (2018), slightly adapting it for our purposes. A
deterministic planning problem over a state space is a tuple
Π = ⟨S,A, s0, SG, f⟩, where S is a finite set of states, A
is a finite set of action labels, s0 ∈ S is the initial state,
SG ⊆ S is the set of goal states, and f : S × A → S is the
transition function, such that f(s, a) is the state which ap-
plying action a in state s leads to. A triplet ⟨s, a, f(s, a)⟩
is called a transition. A solution to such a problem is a
sequence of states and action labels (also called a trace)
ρ = ⟨s0, a1, s1, a2, . . . an, sn⟩, such that f(si, ai+1) = si+1

for 0 ≤ i < n and sn ∈ SG. In cases when the action labels
are not important, they can be dropped from the definition.

The “black box” approach encodes the state space with a
tuple Πbb = ⟨s0, succ, isgoal⟩, where s0 is the initial state,
succ : S → 2A×S is a successor generator, and isgoal :
S → {T, F} is the goal test function.

A solution to the black-box problem is a se-
quence of states and action labels (a trace) π =
⟨s0, a1, s1, a2, . . . an, sn⟩, such that ⟨ai+1, si+1⟩ ∈
succ(si) for 0 ≤ i < n and isgoal(sn) = T . Here as well,
if action labels are not important, they can be dropped.

We now establish the correspondence between the black-
box encoding and the planning problem.

Definition 1 (Soundness and completeness)
We say that isgoal is sound if isgoal(s) = F for all s ̸∈ SG

and isgoal is complete if isgoal(s) = T for all s ∈ SG.
We say that succ is sound if succ(s)⊆{⟨a, s′⟩ |f(s, a)=s′}
and succ is complete if succ(s) ⊇ {⟨a, s′⟩ | f(s, a) = s′}.

Sound and complete successor generator and goal test
provide the “black box” description of the state space of the
planning problem Π. In such cases, a solution to Πbb is guar-
anteed to be a solution to Π, and if no solution for Πbb exists,
then Π also must be unsolvable.

If the successor generator and goal test are sound, but not
necessarily complete, it is still the case that a solution to Πbb

is guaranteed to be a solution to Π and therefore soundness
allows us to reliably use Πbb for producing solutions for Π.

4 Proposed Approach and Methodology
We build upon the previous work that proposed producing
a code implementation of succ and isgoal functions (Katz
et al. 2024), taking the human out of the feedback loop. Sim-
ilar to that work, we care about two properties, soundness
and completeness. As we deal with planning problems de-
scribed in a natural language, we do not have the formally
defined planning task Π. Albeit not stated formally, previous
work on generating succ and isgoal with language models
assumes the existence of a human expert with the ability to
access Π (often in their mind). Examples of such access in-
clude a feedback on the code of succ and isgoal produced by
the LLM (Katz et al. 2024) or validating a solution obtained
from the LLM in cases when succ and isgoal are imple-
mented through LLMs (Hao et al. 2023a; Yao et al. 2023a;
Besta et al. 2024; Sel et al. 2023). Here, we make a similar
assumption, but request a different access to Π. In order to
challenge the soundness and completeness of the produced
functions, the human expert is asked to produce unit tests,
information which can provide evidence of unsoundness or
incompleteness. The evidence can then be used to automati-
cally feedback the model with the information needed to fix
the code. We deal with three types of information, exempli-
fied on the 24 Game (Yao et al. 2023a).

• Examples of inputs to isgoal for which the correct output
is known. For instance, we know that isgoal([24]) should
be true and isgoal([24, 1]) should be false.

• Examples of inputs to succ for which some of the correct
outputs are known. For instance, we know that [24], [2],
and [-2] are valid successors of [6,4] and therefore should
be in succ([6, 4]).

• A partial soundness check for a transition ⟨s, a, t⟩
quickly invalidating (obviously) incorrect transitions. For
instance, in 24 Game we know that the successor state t
must be of length exactly one less than s.

The first two are are usually readily available and often
come with the description of the problem. The third one
might require some level of understanding of the problem
being solved, but it is always possible to use a trivial partial
soundness test that always reports that there are no issues.
Figure 1 presents an overview of our approach, describing
how the provided information is used.

Step 1 Following Katz et al. (2024), we start with the initial
prompts asking for the successor function succ and
the goal test isgoal .

Step 2 Then, we perform the goal unit tests, providing feed-
back to the model in cases of failure, repeatedly ask-
ing for a new isgoal until all goal unit tests have
passed or a predefined number of iterations was ex-
hausted.

Step 3 Once isgoal has passed the unit tests, we perform
a soundness check of the current succ and isgoal
functions. We do that by plugging these functions in

a BFS extended with additional checks and run it on
a few example problem instances. If BFS finished,
we check whether the goal was indeed reached. If
not, that means that isgoal failed to correctly iden-
tify a state as a non-goal state and we provide that
as feedback to the model, repeating Steps 2 and 3.

Step 4 (Optional) Once the previous steps were finished,
we perform the successor unit test, providing feed-
back to the language model in case of failure.

Every time a goal test fails, we go back to Step 2, every
time the successor test fails, we go back to Step 3. After
the first step, we always have succ and isgoal that can be
plugged into a blind search algorithm. However, if Step 3
fails, we have an indication that we cannot trust the solutions
produced by that algorithm.

Example feedback produced in Steps 2, 3, and 4 can be
seen in Listing 1. In what follows, we provide detailed de-
scription of each step of AutoToS.

4.1 System prompt
We instruct the model to provide answers in convenient form
for integrating as a search component. Thus, the produced
code should consist of a single, self-contained function. Fol-
lowing existing work (Zhong, Wang, and Shang 2024; Yang
et al. 2024), we devise the following system prompt.

You are a Python coding assistant. Help me generate my Python functions based
on the task descriptions. Please always generate only a single function and keep
all imports in it. If you need to define any additional functions, define them as
inner functions. Do not generate examples of how to invoke the function. Please
do not add any print statements outside the function. Provide the complete func-
tion and do not include any ellipsis notation.

4.2 Step 1: Initial prompt
While the initial prompt is the primary source of information
for the language model and therefore very important, we as-
sume that we have very limited control over it. We therefore
mostly take the existing initial prompt from previous work,
only ensuring that it includes an example input to the re-
quested function in the correct format (Katz et al. 2024).

4.3 Step 2: Goal function check
Goal unit tests assume the existence of a few known goal and
non-goal states. If the goal function isgoal incorrectly iden-
tifies a goal state, then it is incomplete, according to Defi-
nition 1. If it incorrectly identifies a non-goal state, then it
is not sound. A search with a non-sound goal function can
incorrectly report that a solution was found. One illustrative
example from the 24 Game is a state [24, 1], which a goal
test function may incorrectly identify as a goal state and stop
before the actual solution was found – in this case, another
arithmetic operation was needed. Whenever an issue with ei-
ther goal function soundness or completeness was identified,
we give feedback to the language model with the description
of the failure and the state for which the failure occurred.
See Listing 1 (top) for an example feedback. Here and later
we use a chain of thought style request, asking the model to
discuss why a mistake was made and to come up with a fix.

4.4 Step 3: Successor function soundness check

A soundness check assumes the existence of example prob-
lem instances for which we know how to validate that a goal
was reached. We extend the BFS/DFS search with additional
checks as follows. First, both the successor and goal test
functions are wrapped with a timeout of 1 second. These
functions should be able to finish in a few milliseconds and
therefore 1 second timeout is an indication of an issue with
the function. An issue can be as simple as unnecessary com-
putation or multiple successor steps performed instead of a
single step or it can even be an infinite loop. Second, suc-
cessor function is wrapped with a check whether it modifies
the input state. Such modifications often happen when suc-
cessor states are copied from the input state and modified.
Shallow copy of the input state was observed in the previous
work (Katz et al. 2024). Third, for every successor gener-
ated at the expansion step of BFS, a partial soundness check
is performed, examining the validity of transitioning from
the parent state to the successor state. An example of such
a partial soundness check in 24 Game is that the succes-
sor state size must be one number less than the parent state.
If that does not hold, the successor function is not sound
according to Definition 1. It is worth emphasizing that this
partial soundness check can be trivial, reporting True for ev-
ery pair of parent and successor states. If any of the checks
did not pass, we feedback the language model with the re-
spective error message, providing example input state and
the unexpected (or expected and unobserved) output, until
all tests are passed or a predefined number of iterations was
exhausted. See Listing 1 (middle) for an example feedback.

4.5 Step 4: Successor function completeness check

A successor function completeness check assumes the ex-
istence of a few known parent and successor states. These
can include all successors for some parent state or a sub-
set thereof. If the successor function does not produce some
of the known successors, then it is not complete according to
Definition 1. While completeness is not required for produc-
ing valid (sound) solutions, incomplete functions may not
generate the part of the search space where goal states are
located and therefore may not be able to find solutions. Im-
proving completeness is therefore an optional step that may
improve the accuracy of the produced code. Here as well, we
give feedback to the language model with the respective er-
ror message, providing example input state and the missing
successors. See Listing 1 (bottom) for an example feedback.

4.6 Automation, evaluation and validation

Since the expensive calls to large language models are not
performed during search, there is no need to artificially re-
strict the algorithms to their incomplete variants (e.g., Yao
et al. (2023a)) and sound and complete algorithms BFS/DFS
can be used for solving the search problems. Still, as the hu-
man feedback is before the feedback loop and the search
components produced are not guaranteed to be sound, the
solutions produced must be validated for soundness.

Listing 1: 24 Game example feedback.

The goal test function failed on the following input state [24, 1], incorrectly
reporting it as a goal state. First think step by step what it means for a state to
be a goal state in this domain. Then think through in words why the goal test
function incorrectly reported input state: [24, 1] as a goal state. Now, revise the
goal test function and ensure it returns false for the input state. Remember how
you fixed the previous mistakes, if any. Keep the same function signature.

Invalid transformation: length mismatch - the length of a successor must be
one less than the parent. Let’s think step by step. First think through in words
why the successor function produced a successor that had a length that was not
exactly one less than the parent. Then provide the complete Python code for the
revised successor function that ensures the length of a successor is exactly one
less than the parent. Remember how you fixed the previous mistakes, if any.
Keep the same function signature.
Input state: [1, 1, 4, 6] Example wrong successor state: [6, 5]

Successor function when run on the state [1, 1, 4, 6] failed to produce all suc-
cessors. Missing successors are: [[1, 4, 7], [-5, 1, 4], [1, 1, 2], [1, 5, 6], [0.25,
1, 6], [-3, 1, 6], [0.16666666666666666, 1, 4], [1, 3, 6], [1, 4, 5], [1, 1, 1.5]]
First think step by step why the successor function failed to produce all succes-
sors of the state. Then, fix the successor function. Remember how you fixed the
previous mistakes, if any. Keep the same function signature.

5 Experiments
In order to check the feasibility of our approach, Auto-
ToS, we conduct experiments with a representative collec-
tion of five search/planning problems: BlocksWorld (Gupta
and Nau 1992), PrOntoQA (Hao et al. 2023b), Mini Cross-
word and 24 Game (Yao et al. 2023b), and Sokoban (Jung-
hanns and Schaeffer 1997). Four of these domains appeared
in ToS (Katz et al. 2024), while the Sokoban domain did
not. We test the performance of various LLMs from three
families, using both the largest and smallest models from
the same family. Specifically, we use GPT-4o and GPT-4o-
Mini (Achiam et al. 2023), Llama3.1-70b and Llama3.1-
405b (Dubey et al. 2024), as well as DeepSeek-CoderV2
(DeepSeek-AI et al. 2024). We additionally tested Llama3-
70b (AI@Meta 2024), Mistral7x-8b (Jiang et al. 2024), and
DeepSeek-CoderV2-Lite, finding these models to perform
poorly and therefore excluded from consideration. We use
Greedy decoding with maximum context length for each
model. For each domain, we restrict the number of calls to
the language model per function to 10 (total maximum of 19
per domain). We repeat each experiment 5 times.

Following ToS, we use a simple implementation of BFS
and DFS search algorithms in Python. DFS is used for Mini
Crosswords, while BFS is used for the other 4 domains.
Each successor function execution is limited to 1 second and
each overall search is limited to 600 seconds. For each do-
main, a few (up to 10) instances are used for creating the
unit tests. In one case, these instances are taken out of the
available set of instances, in other cases we invent new in-
stances. The rest are used for evaluating the accuracy of
the generated code, where accuracy measures the percent-
age of the instances solved. In the case of BFS search, we
also require the solution produced to be optimal. This is
relevant to BlocksWorld and Sokoban where the solution
length matters, but irrelevant for PrOntoQA, where solution

Figure 2: Progression of accuracy values during AutoToS.

is a boolean answer, and 24 Game, where all solutions are
of the same length. It is important to emphasize again that
if successor function and goal test are sound and complete,
then the solution produced by BFS/DFS is guaranteed to be
correct (and in the case of BFS optimal). However, since
no such guarantees are available, we automatically validate
every solution obtained. Experiments were performed on a
AMD Ryzen 7 4800H. All models were accessed via API,
except for Llama and Deepseek, which were interacted with
through a chat interface. Model correspondences logs across
all 5 domains are provided in the Appendix.

The aim of our evaluation is to test the following hy-
potheses. First, whether a partial soundness test improves
the accuracy of AutoToS. Second, whether the (optional)
completeness step improves the accuracy of AutoToS or not.
Third, whether the number of calls to the language model in-
creases significantly compared to ToS. Finally, whether the
performance of AutoToS is consistent across different lan-
guage models of varying sizes.

5.1 24 Game

The 24 Game (Yao et al. 2023b) takes 4 integers as an in-
put that can be manipulated through the four most common
arithmetic operations: addition, subtraction, multiplication,
and division. The goal of the game is to produce a formula
that evaluates to 24, if one exists. States are represented as
lists of length 4 or less.
Data We use the set of 1362 instances (Yao et al. 2023b;
Katz et al. 2024) and we take out the first 10 instances for
unit tests. Goal unit tests use [24] for goal and [], [3] ,[24,
1], [1, 6, 4], [1, 1, 4, 6] for non-goal examples. Successor
completeness test uses the initial state with all its successors
for each of the 10 instances, as well as a single transition
along a known solution path for each of these instances. For
example, the successors of [6, 6, 6, 6] are [1, 6, 6], [6, 6, 12],
[0, 6, 6], and [6, 6, 36]. Also, a successor of [6, 6, 12] along
the known solution path is [6, 18] and of [6, 18] is [24].
Partial soundness test For the partial soundness test we
check whether the number of elements in a successor state
is one less than for the parent state.
Solution validation A solution is a sequence of states
s0, s1, s2, s3, where s0 is the initial state, s3 = [24] is the
goal state, and ⟨s0, s1⟩, ⟨s1, s2⟩, and ⟨s2, s3⟩, are valid tran-
sitions. We check that all these hold for a given sequence.

24 Game PrOntoQA Sokoban Crossword BlocksWorld

A
utoToS

GPT-4o-mini 8.8 4.8 6.4 9.6 10.0
GPT-4o 3.4 2.6 2.2 5.8 2.0
Llama3.1-405b 3.4 2.0 2.6 4.0 3.2
Llama3.1-70b 7.4 2.0 8.2 6.2 5.8
DeepSeek-CoderV2 4.4 2.0 2.8 6.6 4.2

ToS GPT-4 2.2 2.6 NA 3.8 3.8

Table 1: The average number of calls to the language model
per domain.

5.2 BlocksWorld

BlocksWorld is a classic AI planning domain, where the
task is to rearrange blocks in towers (Gupta and Nau 1992).
There are 4 actions: stack a block on top of another block,
unstack a block from another block, put a block down on
the table, and pick a block up from the table. States are rep-
resented as dictionaries based on ‘clear’, ‘on-table’, ‘arm-
empty’, ‘holding’, and ‘on’, describing whether a block is
clear (no block above it in the tower), the block is on the ta-
ble, whether the arm is not holding a block and which blocks
are on which.
Data The domain has a PDDL representation and a large
collection of 502 instances was created by Valmeekam et al.
(2023a) and used in the recent literature (Hao et al. 2023a).
We use the entire collection for evaluation and invent 2 ex-
ample states (and transitions along 2 plans) per unit test. The
examples can be found in the Appendix.
Partial soundness test For the partial soundness test we no-
tice that in each tower there is a top block (that is clear) and
there is a bottom block (that is on the table). Therefore we
simply check that the number of blocks in the ‘clear’ list is
the same as in the ‘on-table’ list.
Solution validation As the instances are given in PDDL, we
simply translate the solution into a PDDL format and use an
external validator VAL (Howey and Long 2003).

5.3 Mini Crosswords

The mini crosswords (Yao et al. 2023b) is a 5x5 crosswords
dataset where the input describes the 5 horizontal and 5 ver-
tical clues and the output is the full 25 letters board. We pro-
vide a list of horizontal and vertical clues which are strings
of words. The verifier ensures that the size of each word in
the rows or columns does not exceed 5.
Data We use the existing 20 instances (Yao et al. 2023b;
Katz et al. 2024), all used for evaluation, with the unit tests
constructed based on 3 invented states each, with the succes-
sor completeness based on a state in which one horizontal
and one vertical clue already filled, which limits the number
of possible successors considerably.
Partial soundness test The partial soundness test verifies
that at most 5 new letters are filled in one transition, as well
as that the number of unfilled letters does not get larger.
Solution validation A crossword puzzle is solved if the end
result is valid, meaning every vertical and horizontal clue is
present in the list of possible clues.

0 1 2
24 Game

Llama 3.1
 70B

Llama 3.1
 405B

GPT-4o
 Mini

GPT-4o

DeepSeek
 Coder V2

0 1 2 3 4 5
24 Game

0 1 2 3 4 5
BlocksWorld

0 1 2 3 4 5
Crossword

0 1 2 3 4 5
PrOntoQA

goal soundness
successor soundness
successor completeness

0 1 2 3 4 5
Sokoban

Figure 3: Average number of feedback calls for goal soundness, successor soundness, and successor completeness.

5.4 PrOntoQA
Logical reasoning can be viewed as a search problem of
finding a sequence of logical rules that when applied to the
known facts, derive or disprove the target hypothesis. Pre-
vious work applies MCTS with successor function and re-
wards obtained by calling an LLM, to examples from the
PrOntoQA dataset (Hao et al. 2023b) to derive the answer
but also the proof, a sequence of reasoning steps. A state is
therefore a set of the facts known to be true.
Data We use the existing set of 4000 instances entirely for
evaluation, inventing 3 examples per unit test.
Partial soundness test A partial soundness test simply
checks that each transition adds a single known fact to the
state, ensuring that the state size increases by exactly 1.
Solution validation In order to validate the solution, we
compare to the known correct answer.

5.5 Sokoban
Sokoban (Junghanns and Schaeffer 1997) is a planning
problem with PSPACE-complete complexity even for non-
optimal planning. The problem, despite its simple concep-
tual rules, is a notoriously hard for generic AI planners and
even for specialized solvers. We use a 2-D grid setup, in
which, given equal number of boxes and goal squares, the
player needs to push all boxes to goal squares without cross-
ing walls or pushing boxes into walls. The player can only
move upward, downward, leftward and rightward where
many pushes are irreversible. The domain has a known plan-
ning model, described in PDDL of varying grid sizes and
difficulties. States are represented as dictionaries with en-
tries: ‘at-player,’ which represents a single pair of coordi-
nates, and ‘at-stone’, a list of coordinates for the stones.
Data We use the collection of PDDL problem instances
from the International Planning Competition (IPC) 2008.
Out of these instances, we select a subset that can be solved
relatively quickly by using the blind search configuration
of the efficient planner Fast Downward (Helmert 2006) and
choose the instances that were solved in under 5 seconds.
This resulted in 11 instances. We use the entire set for eval-
uation and invent 3 states per unit test.
Partial soundness test The test simply checks whether the
locations of the player and the stones are all different.
Solution validation Similar to BlocksWorld, we translate
the solution to PDDL format and use VAL.

Figure 2 depicts the progression of accuracy values for

three time points in the process, comparing using the partial
soundness test (solid lines, ‘w/ val’) and not (dotted lines,
‘w/o val’). Same colors represent the same language model.
The first point in the process corresponds to when the search
components are first created, meaning no feedback at all.
The second point in the process is when the goal and suc-
cessor function soundness tests are not failing. The third and
final point is the end of the process, when successor com-
pleteness tests are not failing. Each point is also annotated
with the percentage of cases the step was reached. The ag-
gregation is performed over such cases. The figure allows us
to find answers for both the first and the second hypotheses.
We can clearly see the benefit from using the partial sound-
ness test, even as simple as the ones we described above. Go-
ing forward, we therefore restrict our attention to using the
partial soundness test. Further, we can clearly see the strong
increase in accuracy when not stopping after the soundness
test passes and performing the completeness tests, across all
models.

Table 1 shows the total number of calls to the language
model until soundness and completeness tests pass. Note
that the minimum number of calls is 2, one for each compo-
nent, even without feedback. We see that the number of au-
tomated calls is comparable to the one when a human expert
is giving the feedback to the model. To look deeper into how
the feedback is partitioned among the three phases, Figure 3
compares the numbers across language models and domains.
We see that the larger models rarely require any feedback on
the goal function and only a few iterations on the successor
function, and more often than not on completeness.

Finally, we can observe that there is no single model that
performs better than all other, according to all parameters
and the performance is quite consistent across the large mod-
els. Interestingly, the smaller model GPT-4o-mini performs
quite well in terms of accuracy.

6 Code Errors Discussion

To be able to improve the performance of the large language
models in generating search components, it is important to
understand the errors in the code produced by these mod-
els. In what follows we first present the error categories and
show the partitioning of the errors to these categories and
then elaborate on a few interesting cases.

Figure 4: Partition of the errors in the generated code.

6.1 Error categories
AutoToS distinguishes 10 error categories and gives each a
separate feedback.

1. succ soundness test failed. 6. isgoal exception occurred.
2. Input state changed by succ. 7. Search timeout in succ soundness test.
3. succ completeness failed. 8. succ execution took too long.
4. isgoal soundness failed. 9. isgoal execution took too long.
5. succ exception occurred. 10. Response parsing error.

Interestingly, we did not observe any errors in the last two
categories. Further only 1, 2, and 3 errors in categories 6, 8,
and 7, respectively. The partition of the errors to the other
5 categories (see Figure 4), shows just how much the mod-
els differ in the type of errors produced. Interestingly, the
DeepSeek-Coder-V2 model rarely produces code that trig-
gers exception or changes the input state and even typically
passes the goal soundness test. Other models, especially the
smaller ones, are more diverse in errors produced. Across
all models, the majority of the errors account for the failed
successor soundness and completeness tests.

6.2 Bloopers
We noticed a few “bloopers,” interesting phenomena that oc-
cur during AutoToS. We share these observations in a hope
of shedding some light onto future understanding of LLM
code generation for planning and search problems.

The first blooper occurs in the 5x5 Crossword for
Llama3.1-70b. The representation of a Crossword instance
includes vertical and horizontal clues which are lists of 5
words each. The model handles horizontal clues well by
simply checking whether a word in row i is in the ith list
in horizontal clues. For vertical clues, however, the model
checks whether the word in column i is at position i among
the clues for every column. Indeed the initial prompt from
obtaining successor function clearly states that:

[...] horizontal answers is a list where element i is a list of
possible answers to clue in row i, and vertical answers is a list
where element i is a list of possible answers to clue in column
i.

The second blooper occurs in the GPT-4o-mini,
Llama3.1-70b, and even in Llama3.1-405b on the
BlocksWorld domain. When generating successors for
the unstack block from another block action, the models
check if the block is clear, but never actually check whether
the arm is empty. The resulting code, in cases when a block
is already held, can generate a successor state in which the
held block is overwritten with the one that is unstacked, and
therefore disappears from the state. On some instances in

the evaluation set the situation does not occur. On others,
invalid solutions are produced and the accuracy score
falls far below 100%. The AutoToS feedback in the next
iterations often solves the problem.

Another blooper occurs in Sokoban, when Llama3.1-70b
generates the initial successor function and the goal test, and
no partial soundness check is performed. The model gen-
erates a helper function is clear that only checks whether
the location on the grid is 0 or 2 (not a wall), disregarding
whether any of the stones are currently at the location. This
allows the player to move and push stones to the locations of
other stones, resulting in the accuracy score of 0. Since the
unit tests pass in this case, no additional iterations were per-
formed. The partial soundness check would catch the error
the first time a faulty state is generated (a state where mul-
tiple stones are at the same location or a player and a stone
are at the same location). The prompt explicitly states what
it means to be clear:

The maze is defined by a grid of values 0,1, and 2, where 2
means it is a goal location for a stone, 1 means the cell is
blocked, and either 0 or 2 means that the cell can be occupied.
A cell is clear if it can be occupied, but is not occupied by
either the player or any stone.

Yet another blooper happens in 24 Game with GPT-4o-
mini and DeepSeek-CoderV2 when no partial soundness
check is performed. When creating a new state out of the in-
put state, two numbers are chosen to perform an arithmetic
operation and in order to obtain the remaining numbers, the
code selects the numbers from the state that are different
from the two chosen numbers. Thus in cases of duplicate
numbers, the state size becomes more than one smaller than
of the parent and on some instances the produced solutions
would not be valid. The AutoToS completeness feedback
eventually solves the problem in these cases.

7 Conclusions and Future Work
We automate the process of generating correct and sound
code for the search components by leveraging debugging
and exception handing with natural language, code feed-
back, iterative reprompting. We demonstrate the perfor-
mance of our approach, AutoToS, across various sized mod-
els and across search problem domains used by the planning
community. With just a few calls to the language model,
we demonstrate that we can obtain the search components
without any direct human in the loop feedback, ensuring
soundness, completeness, accuracy, and nearly 100% accu-
racy across all models and all domains.

For future work it would be interesting to see if the lan-
guage models could generate the unit tests as well as the

partial soundness tests instead of relying on the user writ-
ing these for a specific domain. The partial soundness test is
related to the notion of invariants in planning (Alcázar and
Torralba 2015). It is worth exploring whether LLMs can help
us derive such invariants. Finally, seeing that smaller lan-
guage models can achieve accuracy on par with the largest
ones, begs the question of whether it would be possible to
finetune an even smaller model and achieve a similar or bet-
ter accuracy.

References
Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.;
Aleman, F. L.; Almeida, D.; Altenschmidt, J.; Altman, S.;
Anadkat, S.; et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.
AI@Meta. 2024. Llama 3 Model Card.
Alcázar, V.; and Torralba, Á. 2015. A Reminder about the
Importance of Computing and Exploiting Invariants in Plan-
ning. In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilber-
stein, S., eds., Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling (ICAPS
2015), 2–6. AAAI Press.
Besta, M.; Blach, N.; Kubicek, A.; Gerstenberger, R.;
Podstawski, M.; Gianinazzi, L.; Gajda, J.; Lehmann, T.;
Niewiadomski, H.; Nyczyk, P.; et al. 2024. Graph of
thoughts: Solving elaborate problems with large language
models. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 38, 17682–17690.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners. Ad-
vances in neural information processing systems, 33: 1877–
1901.
Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; et al. 2021. Eval-
uating Large Language Models Trained on Code. CoRR,
abs/2107.03374.
Chen, X.; Lin, M.; Schärli, N.; and Zhou, D. 2024. Teaching
Large Language Models to Self-Debug. In ICLR. OpenRe-
view.net.
Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990.
Introduction to Algorithms. The MIT Press.
DeepSeek-AI; Liu, A.; Feng, B.; Wang, B.; Wang, B.; Liu,
B.; Zhao, C.; Dengr, C.; Ruan, C.; et al. 2024. DeepSeek-V2:
A Strong, Economical, and Efficient Mixture-of-Experts
Language Model. arXiv:2405.04434.
Dubey, A.; Jauhri, A.; Pandey, A.; Kadian, A.; Al-Dahle,
A.; Letman, A.; Mathur, A.; Schelten, A.; Yang, A.; Fan,
A.; Goyal, A.; et al. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783.
Gestrin, E.; Kuhlmann, M.; and Seipp, J. 2024. NL2Plan:
Robust LLM-Driven Planning from Minimal Text Descrip-
tions. arXiv:2405.04215.
Gou, Z.; Shao, Z.; Gong, Y.; yelong shen; Yang, Y.; Duan,
N.; and Chen, W. 2024. CRITIC: Large Language Models
Can Self-Correct with Tool-Interactive Critiquing. In The
Twelfth International Conference on Learning Representa-
tions.

Guan, L.; Valmeekam, K.; Sreedharan, S.; and Kambham-
pati, S. 2023. Leveraging pre-trained large language models
to construct and utilize world models for model-based task
planning. Advances in Neural Information Processing Sys-
tems, 36: 79081–79094.

Gupta, N.; and Nau, D. S. 1992. On the Complexity of
Blocks-World Planning. 56(2–3): 223–254.

Hao, S.; Gu, Y.; Ma, H.; Hong, J.; Wang, Z.; Wang, D.; and
Hu, Z. 2023a. Reasoning with Language Model is Plan-
ning with World Model. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP 2023).

Hao, S.; Gu, Y.; Ma, H.; Hong, J.; Wang, Z.; Wang, D.; and
Hu, Z. 2023b. Reasoning with Language Model is Plan-
ning with World Model. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Process-
ing, 8154–8173.

Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.

Howey, R.; and Long, D. 2003. VAL’s Progress: The Auto-
matic Validation Tool for PDDL2.1 used in the International
Planning Competition. In Edelkamp, S.; and Hoffmann, J.,
eds., Proceedings of the ICAPS 2003 Workshop on the Com-
petition: Impact, Organisation, Evaluation, Benchmarks.

Huang, J.; Chen, X.; Mishra, S.; Zheng, H. S.; Yu, A. W.;
Song, X.; and Zhou, D. 2024. Large Language Models Can-
not Self-Correct Reasoning Yet. In The Twelfth Interna-
tional Conference on Learning Representations.

Jiang, A. Q.; Sablayrolles, A.; Roux, A.; Mensch, A.; et al.
2024. Mixtral of Experts. arXiv:2401.04088.

Jiang, S.; Wang, Y.; and Wang, Y. 2023. SelfEvolve: A
Code Evolution Framework via Large Language Models.
arXiv:2306.02907.

Junghanns, A.; and Schaeffer, J. 1997. Sokoban: A Chal-
lenging Single-Agent Search Problem. In International
Joint Conference on Artificial Intelligence.

Kambhampati, S.; Valmeekam, K.; Guan, L.; Verma, M.;
Stechly, K.; Bhambri, S.; Saldyt, L. P.; and Murthy, A. B.
2024a. Position: LLMs Can’t Plan, But Can Help Planning
in LLM-Modulo Frameworks. In Forty-first International
Conference on Machine Learning.

Kambhampati, S.; Valmeekam, K.; Guan, L.; Verma, M.;
Stechly, K.; Bhambri, S.; Saldyt, L. P.; and Murthy, A. B.
2024b. Position: LLMs Can’t Plan, But Can Help Planning
in LLM-Modulo Frameworks. In Forty-first International
Conference on Machine Learning.

Katz, M.; Kokel, H.; Srinivas, K.; and Sohrabi, S. 2024.
Thought of Search: Planning with Language Models
Through The Lens of Efficiency. arXiv:2404.11833 [cs.AI].

Katz, M.; Moshkovich, D.; and Karpas, E. 2018. Semi-
Black Box: Rapid Development of Planning Based Solu-
tions. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI 2018), 6211–6218. AAAI
Press.

Kojima, T.; Gu, S. S.; Reid, M.; Matsuo, Y.; and Iwasawa,
Y. 2022. Large language models are zero-shot reason-
ers. Advances in neural information processing systems, 35:
22199–22213.
Li, Y.; Parsert, J.; and Polgreen, E. 2024. Guiding Enumer-
ative Program Synthesis with Large Language Models. In
CAV (2), volume 14682 of Lecture Notes in Computer Sci-
ence, 280–301. Springer.
Liu, B.; Jiang, Y.; Zhang, X.; Liu, Q.; Zhang, S.; Biswas,
J.; and Stone, P. 2023. LLM+P: Empowering Large Lan-
guage Models with Optimal Planning Proficiency. CoRR,
abs/2304.11477.
Madaan, A.; Tandon, N.; Gupta, P.; Hallinan, S.; Gao, L.;
Wiegreffe, S.; Alon, U.; Dziri, N.; Prabhumoye, S.; Yang,
Y.; Gupta, S.; Majumder, B. P.; Hermann, K.; Welleck, S.;
Yazdanbakhsh, A.; and Clark, P. 2023. Self-Refine: Itera-
tive Refinement with Self-Feedback. In Oh, A.; Naumann,
T.; Globerson, A.; Saenko, K.; Hardt, M.; and Levine, S.,
eds., Advances in Neural Information Processing Systems,
volume 36, 46534–46594. Curran Associates, Inc.
Muennighoff, N.; Liu, Q.; Zebaze, A. R.; Zheng, Q.; Hui, B.;
Zhuo, T. Y.; Singh, S.; Tang, X.; von Werra, L.; and Long-
pre, S. 2024. OctoPack: Instruction Tuning Code Large Lan-
guage Models. In ICLR. OpenReview.net.
Oswald, J.; Srinivas, K.; Kokel, H.; Lee, J.; Katz, M.; and
Sohrabi, S. 2024. Large Language Models as Planning Do-
main Generators. In Bernardini, S.; and Muise, C., eds., Pro-
ceedings of the Thirty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS 2024). AAAI
Press.
Pallagani, V.; Muppasani, B.; Murugesan, K.; Rossi, F.;
Horesh, L.; Srivastava, B.; Fabiano, F.; and Loreggia, A.
2022. Plansformer: Generating Symbolic Plans using Trans-
formers. arXiv:2212.08681 [cs.AI].
Pallagani, V.; Muppasani, B.; Murugesan, K.; Rossi, F.; Sri-
vastava, B.; Horesh, L.; Fabiano, F.; and Loreggia, A. 2023.
Understanding the Capabilities of Large Language Models
for Automated Planning. CoRR, abs/2305.16151.
Puri, R.; Kung, D. S.; Janssen, G.; Zhang, W.; Domeni-
coni, G.; Zolotov, V.; Dolby, J.; Chen, J.; Choudhury, M. R.;
Decker, L.; Thost, V.; Buratti, L.; Pujar, S.; Ramji, S.; Fin-
kler, U.; Malaika, S.; and Reiss, F. 2021. CodeNet: A Large-
Scale AI for Code Dataset for Learning a Diversity of Cod-
ing Tasks. In NeurIPS Datasets and Benchmarks.
Raman, S. S.; Cohen, V.; Rosen, E.; Idrees, I.; Paulius, D.;
and Tellex, S. 2022. Planning With Large Language Models
Via Corrective Re-Prompting. In NeurIPS 2022 Foundation
Models for Decision Making Workshop.
Sel, B.; Al-Tawaha, A.; Khattar, V.; Wang, L.; Jia, R.;
and Jin, M. 2023. Algorithm of Thoughts: Enhancing
Exploration of Ideas in Large Language Models. CoRR,
abs/2308.10379.
Shinn, N.; Cassano, F.; Gopinath, A.; Narasimhan, K.; and
Yao, S. 2023. Reflexion: language agents with verbal re-
inforcement learning. In Proceedings of the Thirty-Seventh
Annual Conference on Neural Information Processing Sys-
tems (NeurIPS 2023).

Silver, T.; Dan, S.; Srinivas, K.; Tenenbaum, J.; Pack Kael-
bling, L.; and Katz, M. 2024. Generalized Planning in
PDDL Domains with Pretrained Large Language Models.
In Dy, J.; and Natarajan, S., eds., Proceedings of the Thirty-
Eighth AAAI Conference on Artificial Intelligence (AAAI
2024). AAAI Press.
Silver, T.; Hariprasad, V.; Shuttleworth, R. S.; Kumar, N.;
Lozano-Pérez, T.; and Kaelbling, L. P. 2022. PDDL Plan-
ning with Pretrained Large Language Models. In NeurIPS
2022 Foundation Models for Decision Making Workshop.
Stechly, K.; Valmeekam, K.; and Kambhampati, S. 2024.
On the Self-Verification Limitations of Large Language
Models on Reasoning and Planning Tasks. arXiv preprint
arXiv:2402.08115.
Valmeekam, K.; Marquez, M.; Olmo, A.; Sreedharan, S.;
and Kambhampati, S. 2023a. PlanBench: An Extensible
Benchmark for Evaluating Large Language Models on Plan-
ning and Reasoning about Change. In Proceedings of the
Thirty-Seventh Annual Conference on Neural Information
Processing Systems (NeurIPS 2023), 38975–38987.
Valmeekam, K.; Marquez, M.; Sreedharan, S.; and Kamb-
hampati, S. 2023b. On the Planning Abilities of Large Lan-
guage Models - A Critical Investigation. In Proceedings of
the Thirty-Seventh Annual Conference on Neural Informa-
tion Processing Systems (NeurIPS 2023).
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Xia, F.;
Chi, E.; Le, Q. V.; Zhou, D.; et al. 2022. Chain-of-
thought prompting elicits reasoning in large language mod-
els. Advances in neural information processing systems, 35:
24824–24837.
Xie, Y.; Yu, C.; Zhu, T.; Bai, J.; Gong, Z.; and Soh, H. 2023.
Translating Natural Language to Planning Goals with Large-
Language Models. CoRR, abs/2302.05128.
Yang, J.; Jimenez, C. E.; Wettig, A.; Lieret, K.; Yao, S.;
Narasimhan, K.; and Press, O. 2024. Swe-agent: Agent-
computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793.
Yao, S.; Yu, D.; Zhao, J.; Shafran, I.; Griffiths, T.; Cao, Y.;
and Narasimhan, K. 2023a. Tree of thoughts: Deliberate
problem solving with large language models. In Proceed-
ings of the Thirty-Seventh Annual Conference on Neural In-
formation Processing Systems (NeurIPS 2023).
Yao, S.; Yu, D.; Zhao, J.; Shafran, I.; Griffiths, T. L.; Cao,
Y.; and Narasimhan, K. R. 2023b. Tree of Thoughts: De-
liberate Problem Solving with Large Language Models. In
Thirty-seventh Conference on Neural Information Process-
ing Systems.
Zhang, K.; Li, Z.; Li, J.; Li, G.; and Jin, Z. 2023. Self-Edit:
Fault-Aware Code Editor for Code Generation. In ACL (1),
769–787. Association for Computational Linguistics.
Zhong, L.; Wang, Z.; and Shang, J. 2024. Debug like a
Human: A Large Language Model Debugger via Verifying
Runtime Execution Step-by-step. arXiv:2402.16906.
Zhou, A.; Yan, K.; Shlapentokh-Rothman, M.; Wang, H.;
and Wang, Y. 2023. Language Agent Tree Search Unifies
Reasoning Acting and Planning in Language Models. CoRR,
abs/2310.04406.

Zuo, M.; Velez, F. P.; Li, X.; Littman, M. L.; and Bach,
S. H. 2024. Planetarium: A Rigorous Benchmark for
Translating Text to Structured Planning Languages. CoRR,
abs/2407.03321.

A Additional data for experimental domains
We provide additional information on the domains included
in our experimental evaluation, such as examples used in
unit tests, code for the partial successor soundness test, etc.

A.1 24 Game
Goal Unit Test Goal unit test cases are stored in two jsonl
files, one for goal states and one for non-goal states.

Listing 2: 24game goal states.jsonl

1 [24]

Listing 3: 24game non goal states.jsonl

1 []
2 [3]
3 [24, 1]
4 [1, 6, 4]
5 [1, 1, 4, 6]

Successor Unit Test Successor unit test cases are stored
in a jsonl file. The test cases used are depicted in Listing 4.

1 [[1, 1, 4, 6], [[1, 1, 10],

[0.6666666666666666, 1, 1], [1, 4, 7], [-2,

1, 1], [-5, 1, 4], [1, 4, 6], [1, 1, 2],

[1, 5, 6], [0.25, 1, 6], [-3, 1, 6], [0, 4,

6], [0.16666666666666666, 1, 4], [1, 1,

24], [1, 3, 6], [2, 4, 6], [1, 4, 5], [1,

1, 1.5]]]

↪→
↪→
↪→
↪→
↪→
↪→

2 [[1, 1, 11, 11], [[1, 11, 11],

[0.09090909090909091, 1, 11], [0, 11, 11],

[1, 1, 22], [2, 11, 11], [0, 1, 1], [1, 1,

121], [1, 11, 12], [1, 1, 1.0], [1, 10,

11], [-10, 1, 11]]]

↪→
↪→
↪→
↪→

3 [[1, 1, 3, 8], [[-2, 1, 8], [1, 3, 8],

[0.3333333333333333, 1, 8], [-7, 1, 3], [1,

1, 2.6666666666666665], [0.125, 1, 3], [2,

3, 8], [1, 3, 7], [1, 1, 11], [1, 1, 5],

[1, 1, 24], [-5, 1, 1], [0.375, 1, 1], [1,

2, 8], [1, 3, 9], [0, 3, 8], [1, 4, 8]]]

↪→
↪→
↪→
↪→
↪→

4 [[1, 1, 1, 8], [[0.125, 1, 1], [1, 1, 9], [1,

1, 8], [0, 1, 8], [1, 2, 8], [1, 1, 7],

[-7, 1, 1]]]

↪→
↪→

5 [[6, 6, 6, 6], [[1.0, 6, 6], [6, 6, 12], [0, 6,

6], [6, 6, 36]]]↪→
6 [[1, 1, 2, 12], [[1, 3, 12], [-10, 1, 1], [1,

1, 10], [2, 2, 12], [1, 2, 13], [0.5, 1,

12], [-11, 1, 2], [1, 1, 12], [1, 1, 6.0],

[1, 2, 12], [0, 2, 12], [1, 1, 24], [1, 2,

11], [1, 1, 14], [0.16666666666666666, 1,

1], [0.08333333333333333, 1, 2], [-1, 1,

12]]]

↪→
↪→
↪→
↪→
↪→
↪→

7 [[1, 2, 2, 6], [[2, 2, 6], [-5, 2, 2], [2, 3,

6], [1, 2, 6], [0.3333333333333333, 1, 2],

[2, 2, 5], [1, 1.0, 6],

[0.16666666666666666, 2, 2], [1, 4, 6], [0,

1, 6], [-4, 1, 2], [1, 2, 12], [1, 2, 3.0],

[2, 2, 7], [-1, 2, 6], [1, 2, 8], [1, 2,

4], [0.5, 2, 6]]]

↪→
↪→
↪→
↪→
↪→
↪→

8 [[1, 1, 10, 12], [[-9, 1, 12], [1, 1, 1.2],

[0.08333333333333333, 1, 10], [-2, 1, 1],

[1, 10, 13], [1, 1, 22], [2, 10, 12], [0.1,

1, 12], [1, 1, 120], [1, 1, 2],

[0.8333333333333334, 1, 1], [1, 9, 12], [1,

10, 12], [0, 10, 12], [1, 11, 12], [1, 10,

11], [-11, 1, 10]]]

↪→
↪→
↪→
↪→
↪→
↪→

9 [[2, 2, 10, 10], [[0, 2, 2], [2, 10, 12], [1.0,

10, 10], [0, 10, 10], [-8, 2, 10], [2, 2,

100], [2, 5.0, 10], [1.0, 2, 2], [2, 2,

20], [4, 10, 10], [0.2, 2, 10], [2, 8, 10],

[2, 10, 20]]]

↪→
↪→
↪→
↪→

10 [[1, 1, 1, 12], [[0.08333333333333333, 1, 1],

[1, 1, 13], [1, 1, 12], [0, 1, 12], [1, 2,

12], [-11, 1, 1], [1, 1, 11]]]

↪→
↪→

11 [[1, 4, 6], [[4, 6]]]

12 [[4, 6], [[24]]]

13 [[1, 1, 22], [[1, 23]]]

14 [[1, 23], [[24]]]

15 [[1, 1, 24], [[1, 24]]]

16 [[1, 24], [[24]]]

17 [[1, 2, 8], [[3, 8]]]

18 [[3, 8], [[24]]]

19 [[6, 6, 12], [[6, 18]]]

20 [[6, 18], [[24]]]

21 [[0, 2, 12], [[0, 24]]]

22 [[0, 24], [[24]]]

23 [[2, 2, 6], [[2, 12]]]

24 [[2, 12], [[24]]]

25 [[1, 11, 12], [[11, 13]]]

26 [[11, 13], [[24]]]

27 [[2, 2, 20], [[2, 22]]]

28 [[2, 22], [[24]]]

29 [[1, 1, 12], [[2, 12]]]

Listing 4: 24game successors.jsonl

Partial Successor Soundness Test The code for the par-
tial successor soundness test is as follows.

def validate_transition_complex(s, t):
if len(s) - len(t) != 1:

feedback = prettyprint("Invalid
transformation: length
mismatch - the length of a
successor must be one less
than the parent.")

↪→

↪→

↪→

↪→

feedback += prettyprint("Let's
think step by step. First
think through in words why
the successor function
produced a successor that
had a length that was not
exactly one less than the
parent. Then provide the
complete Python code for
the revised successor
function that ensures the
length of a successor is
exactly one less than the
parent.")

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

feedback +=
prettyprint("Remember how
you fixed the previous
mistakes, if any. Keep the
same function signature.")

↪→

↪→

↪→

↪→

return False, feedback
return True, ""

A.2 Blocksworld
Goal Unit Test Goal unit test cases are stored in two jsonl
files, one for goal states and one for non-goal states, depicted
in Listings 5 and 6.

Listing 5: blocks goal states.jsonl

1 [

2 { "state": {

3 "clear": ["b"],

4 "on-table": ["d"],

5 "arm-empty": true,

6 "holding": null,

7 "on": [["a", "c"],["b",

"a"],["c","d"]]↪→
8 },

9 "goal": {

10 "clear": [],

11 "on-table": [],

12 "on":

[["a","c"],["b","a"],["c","d"]]↪→
13 }

14 },

15 { "state": {

16 "clear": ["a"],

17 "on-table": ["d"],

18 "arm-empty": false,

19 "holding": "b",

20 "on": [["a","c"],["c","d"]]

21 },

22 "goal": {

23 "clear": [],

24 "on-table": [],

25 "on": [["a","c"]]

26 }

27 }

28]

Listing 6: blocks non goal states.jsonl

1 [

2 {

3 "state": {

4 "clear": ["b"],

5 "on-table": ["d"],

6 "arm-empty": true,

7 "holding": null,

8 "on":

[["a","c"],["b","a"],["c","d"]]↪→
9 },

10 "goal": {

11 "clear": [],

12 "on-table": [],

13 "on":

[["a","b"],["b","c"],["c","d"]]↪→
14 }

15 },

16 {

17 "state": {

18 "clear": ["a"],

19 "on-table": ["d"],

20 "arm-empty": false,

21 "holding": "b",

22 "on": [["a","c"],["c","d"]]

23 },

24 "goal":

25 {

26 "clear": [],

27 "on-table": [],

28 "on": [["a","c"],["c","b"]]

29 }

30 }

31]

Successor Unit Test Successor unit test cases are stored
in a jsonl file, depicted in Listing 7.

1 [

2 {

3 "state": {

4 "clear": ["b"],

5 "on-table": ["d"],

6 "arm-empty": true,

7 "holding": null,

8 "on":

[["a","c"],["b","a"],["c","d"]]↪→
9 },

10 "successors": [

11 {

12 "clear": ["a"],

13 "on-table": ["d"],

14 "arm-empty": false,

15 "holding": "b",

16 "on": [["a","c"],["c","d"]]

17 }

18]

19 },

20 {

21 "state": {

22 "clear": ["a"],

23 "on-table": ["d"],

24 "arm-empty": false,

25 "holding": "b",

26 "on": [["a","c"],["c","d"]]

27 },

28 "successors": [

29 {

30 "clear": ["a","b"],

31 "on-table": ["d","b"],

32 "arm-empty": true,

33 "holding": null,

34 "on": [["a","c"],["c","d"]]

35 },

36 {

37 "clear": ["b"],

38 "on-table": ["d"],

39 "arm-empty": true,

40 "holding": null,

41 "on":

[["a","c"],["c","d"],["b","a"]]↪→
42 }

43]

44 },

45 {

46 "state": {

47 "clear": ["a","b","d"],

48 "on-table": ["a","c","d"],

49 "arm-empty": true,

50 "holding": null,

51 "on": [["b","c"]]

52 },

53 "successors": [

54 {

55 "clear": ["b","d"],

56 "on-table": ["c","d"],

57 "arm-empty": false,

58 "holding": "a",

59 "on": [["b","c"]]

60 },

61 {

62 "clear": ["a","b"],

63 "on-table": ["a","c"],

64 "arm-empty": false,

65 "holding": "d",

66 "on": [["b","c"]]

67 },

68 {

69 "clear": ["a","d","c"],

70 "on-table": ["a","c","d"],

71 "arm-empty": false,

72 "holding": "b",

73 "on": []

74 }

75]

76 },

77 {

78 "state": {

79 "clear": ["b","d"],

80 "on-table": ["c","d"],

81 "arm-empty": false,

82 "holding": "a",

83 "on": [["b","c"]]

84 },

85 "successors": [

86 {

87 "clear": ["b","d","a"],

88 "on-table": ["c","d","a"],

89 "arm-empty": true,

90 "holding": null,

91 "on": [["b","c"]]

92 },

93 {

94 "clear": ["d","a"],

95 "on-table": ["c","d"],

96 "arm-empty": true,

97 "holding": null,

98 "on": [["b","c"],["a","b"]]

99 },

100 {

101 "clear": ["b","a"],

102 "on-table": ["c","d"],

103 "arm-empty": true,

104 "holding": null,

105 "on": [["b","c"],["a","d"]]

106 }

107]

108 },

109 {

110 "state": {

111 "clear": ["a","d"],

112 "on-table": ["b","c"],

113 "arm-empty": true,

114 "holding": null,

115 "on": [["a","b"],["d","c"]]

116 },

117 "successors": [

118 {

119 "clear": ["d","b"],

120 "on-table": ["b","c"],

121 "arm-empty": false,

122 "holding": "a",

123 "on": [["d","c"]]

124 },

125 {

126 "clear": ["a","c"],

127 "on-table": ["b","c"],

128 "arm-empty": false,

129 "holding": "d",

130 "on": [["a","b"]]

131 }

132]

133 },

134 {

135 "state": {

136 "clear": ["d","b"],

137 "on-table": ["b","c"],

138 "arm-empty": false,

139 "holding": "a",

140 "on": [["d","c"]]

141 },

142 "successors": [

143 {

144 "clear": ["d","b","a"],

145 "on-table": ["b","c","a"],

146 "arm-empty": true,

147 "holding": null,

148 "on": [["d","c"]]

149 },

150 {

151 "clear": ["b","a"],

152 "on-table": ["b","c"],

153 "arm-empty": true,

154 "holding": null,

155 "on": [["d","c"],["a","d"]]

156 },

157 {

158 "clear": ["d","a"],

159 "on-table": ["b","c"],

160 "arm-empty": true,

161 "holding": null,

162 "on": [["d","c"],["a","b"]]

163 }

164]

165 },

166 {

167 "state": {

168 "clear": ["b"],

169 "on-table": ["a"],

170 "arm-empty": true,

171 "holding": null,

172 "on":

[["b","c"],["c","d"],["d","a"]]↪→
173 },

174 "successors": [

175 {

176 "clear": ["c"],

177 "on-table": ["a"],

178 "arm-empty": false,

179 "holding": "b",

180 "on": [["c","d"],["d","a"]]

181 }

182]

183 },

184 {

185 "state": {

186 "clear": ["c"],

187 "on-table": ["a"],

188 "arm-empty": false,

189 "holding": "b",

190 "on": [["c","d"],["d","a"]]

191 },

192 "successors": [

193 {

194 "clear": ["c","b"],

195 "on-table": ["a","b"],

196 "arm-empty": true,

197 "holding": null,

198 "on": [["c","d"],["d","a"]]

199 },

200 {

201 "clear": ["b"],

202 "on-table": ["a"],

203 "arm-empty": true,

204 "holding": null,

205 "on":

[["c","d"],["d","a"],["b","c"]]↪→
206 }

207]

208 },

209 {

210 "state": {

211 "clear": ["d"],

212 "on-table": ["b"],

213 "arm-empty": true,

214 "holding": null,

215 "on":

[["a","c"],["c","b"],["d","a"]]↪→
216 },

217 "successors": [

218 {

219 "clear": ["a"],

220 "on-table": ["b"],

221 "arm-empty": false,

222 "holding": "d",

223 "on": [["a","c"],["c","b"]]

224 }

225]

226 },

227 {

228 "state": {

229 "clear": ["a"],

230 "on-table": ["b"],

231 "arm-empty": false,

232 "holding": "d",

233 "on": [["a","c"],["c","b"]]

234 },

235 "successors": [

236 {

237 "clear": ["a","d"],

238 "on-table": ["b","d"],

239 "arm-empty": true,

240 "holding": null,

241 "on": [["a","c"],["c","b"]]

242 },

243 {

244 "clear": ["d"],

245 "on-table": ["b"],

246 "arm-empty": true,

247 "holding": null,

248 "on":

[["a","c"],["c","b"],["d","a"]]↪→
249 }

250]

251 },

252 {

253 "state": {

254 "clear": ["c","d"],

255 "on-table": ["a","d"],

256 "arm-empty": true,

257 "holding": null,

258 "on": [["b","a"],["c","b"]]

259 },

260 "successors": [

261 {

262 "clear": ["c"],

263 "on-table": ["a"],

264 "arm-empty": false,

265 "holding": "d",

266 "on": [["b","a"],["c","b"]]

267 },

268 {

269 "clear": ["d","b"],

270 "on-table": ["a","d"],

271 "arm-empty": false,

272 "holding": "c",

273 "on": [["b","a"]]

274 }

275]

276 },

277 {

278 "state": {

279 "clear": ["c"],

280 "on-table": ["a"],

281 "arm-empty": false,

282 "holding": "d",

283 "on": [["b","a"],["c","b"]]

284 },

285 "successors": [

286 {

287 "clear": ["c","d"],

288 "on-table": ["a","d"],

289 "arm-empty": true,

290 "holding": null,

291 "on": [["b","a"],["c","b"]]

292 },

293 {

294 "clear": ["d"],

295 "on-table": ["a"],

296 "arm-empty": true,

297 "holding": null,

298 "on":

[["b","a"],["c","b"],["d","c"]]↪→
299 }

300]

301 },

302 {

303 "state": {

304 "clear": ["d"],

305 "on-table": ["b"],

306 "arm-empty": true,

307 "holding": null,

308 "on":

[["a","c"],["c","b"],["d","a"]]↪→
309 },

310 "successors": [

311 {

312 "clear": ["a"],

313 "on-table": ["b"],

314 "arm-empty": false,

315 "holding": "d",

316 "on": [["a","c"],["c","b"]]

317 }

318]

319 },

320 {

321 "state": {

322 "clear": ["a"],

323 "on-table": ["b"],

324 "arm-empty": false,

325 "holding": "d",

326 "on": [["a","c"],["c","b"]]

327 },

328 "successors": [

329 {

330 "clear": ["a","d"],

331 "on-table": ["b","d"],

332 "arm-empty": true,

333 "holding": null,

334 "on": [["a","c"],["c","b"]]

335 },

336 {

337 "clear": ["d"],

338 "on-table": ["b"],

339 "arm-empty": true,

340 "holding": null,

341 "on":

[["a","c"],["c","b"],["d","a"]]↪→
342 }

343]

344 },

345 {

346 "state": {

347 "clear": ["a"],

348 "on-table": ["c"],

349 "arm-empty": true,

350 "holding": null,

351 "on":

[["a","d"],["b","c"],["d","b"]]↪→
352 },

353 "successors": [

354 {

355 "clear": ["d"],

356 "on-table": ["c"],

357 "arm-empty": false,

358 "holding": "a",

359 "on": [["b","c"],["d","b"]]

360 }

361]

362 },

363 {

364 "state": {

365 "clear": ["d"],

366 "on-table": ["c"],

367 "arm-empty": false,

368 "holding": "a",

369 "on": [["b","c"],["d","b"]]

370 },

371 "successors": [

372 {

373 "clear": ["d","a"],

374 "on-table": ["c","a"],

375 "arm-empty": true,

376 "holding": null,

377 "on": [["b","c"],["d","b"]]

378 },

379 {

380 "clear": ["a"],

381 "on-table": ["c"],

382 "arm-empty": true,

383 "holding": null,

384 "on":

[["b","c"],["d","b"],["a","d"]]↪→
385 }

386]

387 },

388 {

389 "state": {

390 "clear": ["a","b","d"],

391 "on-table": ["a","c","d"],

392 "arm-empty": true,

393 "holding": null,

394 "on": [["b","c"]]

395 },

396 "successors": [

397 {

398 "clear": ["b","d"],

399 "on-table": ["c","d"],

400 "arm-empty": false,

401 "holding": "a",

402 "on": [["b","c"]]

403 },

404 {

405 "clear": ["a","b"],

406 "on-table": ["a","c"],

407 "arm-empty": false,

408 "holding": "d",

409 "on": [["b","c"]]

410 },

411 {

412 "clear": ["a","d","c"],

413 "on-table": ["a","c","d"],

414 "arm-empty": false,

415 "holding": "b",

416 "on": []

417 }

418]

419 },

420 {

421 "state": {

422 "clear": ["b","d"],

423 "on-table": ["c","d"],

424 "arm-empty": false,

425 "holding": "a",

426 "on": [["b","c"]]

427 },

428 "successors": [

429 {

430 "clear": ["b","d","a"],

431 "on-table": ["c","d","a"],

432 "arm-empty": true,

433 "holding": null,

434 "on": [["b","c"]]

435 },

436 {

437 "clear": ["d","a"],

438 "on-table": ["c","d"],

439 "arm-empty": true,

440 "holding": null,

441 "on": [["b","c"],["a","b"]]

442 },

443 {

444 "clear": ["b","a"],

445 "on-table": ["c","d"],

446 "arm-empty": true,

447 "holding": null,

448 "on": [["b","c"],["a","d"]]

449 }

450]

451 },

452 {

453 "state": {

454 "clear": ["b","c"],

455 "on-table": ["a","b"],

456 "arm-empty": true,

457 "holding": null,

458 "on": [["c","d"],["d","a"]]

459 },

460 "successors": [

461 {

462 "clear": ["c"],

463 "on-table": ["a"],

464 "arm-empty": false,

465 "holding": "b",

466 "on": [["c","d"],["d","a"]]

467 },

468 {

469 "clear": ["b","d"],

470 "on-table": ["a","b"],

471 "arm-empty": false,

472 "holding": "c",

473 "on": [["d","a"]]

474 }

475]

476 },

477 {

478 "state": {

479 "clear": ["c"],

480 "on-table": ["a"],

481 "arm-empty": false,

482 "holding": "b",

483 "on": [["c","d"],["d","a"]]

484 },

485 "successors": [

486 {

487 "clear": ["c","b"],

488 "on-table": ["a","b"],

489 "arm-empty": true,

490 "holding": null,

491 "on": [["c","d"],["d","a"]]

492 },

493 {

494 "clear": ["b"],

495 "on-table": ["a"],

496 "arm-empty": true,

497 "holding": null,

498 "on":

[["c","d"],["d","a"],["b","c"]]↪→
499 }

500]

501 }

502]

Listing 7: blocks successors.jsonl

Partial Successor Soundness Test

def validate_transition_complex(parent, state):

if len(state.get('clear')) !=

len(state.get('on-table')):↪→
feedback += prettyprint("Each tower has the

bottom block on the table and the top block

clear.")

↪→
↪→
feedback += prettyprint("Therefore, the number

of clear blocks should be the same as the

number of blocks on the table.")

↪→
↪→
feedback += prettyprint("The number of elements

in the clear list is not the same as the

number of elements in the on-table list.")

↪→
↪→
feedback += prettyprint("Reminder: Once I pick

up a block, I am holding the block and it is

no longer clear and no longer on the

table.")

↪→
↪→
↪→
feedback += prettyprint("Once I unstack from on

top of another block, I am holding the block

and it is no longer clear. Instead, the

other block becomes clear.")

↪→
↪→
↪→
feedback += prettyprint("Once I put down a

block, my hand becomes empty, the block

becomes clear, and it is now on the table.")

↪→
↪→
feedback += prettyprint("Once I stack a block on

top of another block, the block on top

becomes clear and the block under it is no

longer clear.")

↪→
↪→
↪→

feedback += prettyprint("Let's think step by

step. First, think of how applying each

action changes which blocks are clear.")

↪→
↪→
feedback += prettyprint("Then, think of how

applying each action changes which blocks

are on the table.")

↪→
↪→
feedback += prettyprint("Then, provide the

complete Python code for the revised

successor function that returns a list of

successor states.")

↪→
↪→
↪→
feedback += prettyprint("Remember how you fixed

the previous mistakes, if any. Keep the same

function signature.")

↪→
↪→
return False, feedback

return True, ""

A.3 5x5 Crosswords

Goal Unit Test Goal unit test cases are stored in two jsonl
files, one for goal states and one for non-goal states.

1 [{"state": [["a", "g", "e", "n", "d"], ["m",

"o", "t", "o", "r"], ["a", "r", "t", "s",

"y"], ["s", "a", "l", "l", "e"], ["s", "l",

"e", "e", "r"]], "horizontal_clues":

[["tasks", "goals", "plans", "agend",

"chores", "works", "deeds", "items",

"lists", "brief"], ["motor", "power",

"drive", "diesel", "steam", "pumps",

"crank", "gears", "turbn", "motor"],

["grand", "artsy", "showy", "ornate",

"fancy", "vain", "proud", "vogue", "swank",

"luxus"], ["venue", "salle", "forum",

"atria", "lobby", "parls", "court",

"malls", "mall", "lobby"], ["jeer",

"scoff", "sleer", "deris", "sneer",

"scorn", "derid", "gibes", "gibed",

"flout"]], "vertical_clues": [["amass",

"stack", "hoard", "pile", "store", "heaps",

"massy", "gathe", "lumps", "mound"],

["nilga", "goral", "eland", "lepus",

"gazal", "kudu", "oryx", "gnu", "imps",

"carb"], ["scheme", "design", "ettle",

"nettle", "sting", "wiles", "plans",

"ideas", "plots", "cocks"], ["spout",

"nosle", "snout", "mouth", "nostr",

"ports", "inlet", "vents", "outlt",

"beaks"], ["drier", "arid", "sere",

"parch", "dryer", "wring", "drear", "sear",

"pall", "lack"]]}, {"state": [["a", "r",

"e", "f", "y"], ["r", "e", "v", "i", "e"],

["i", "g", "a", "l", "a"], ["s", "e", "d",

"e", "r"], ["e", "t", "e", "r", "n"]],

"horizontal_clues": [["parch", "dryup",

"arefy", "wring", "suckd", "wizen",

"desic", "evapo", "scald", "toast"],

["excel", "revie", "beat", "top", "best",

"rise", "win", "lead", "rule", "boss"],

["igala", "tribe", "people", "race",

"ethni", "nation", "yorub", "niger",

"triba", "tribu"], ["seder", "meal",

"food", "feast", "dine", "dish", "supper",

"banqu", "treat", "fetes"], ["eterl",

"etern", "everl", "forev", "immor",

"endur", "const", "perma", "durab",

"timeless"]], "vertical_clues": [["arise",

"climb", "soar", "ascen", "mount", "leaps",

"scale", "clamb", "steps", "jump"],

["regain", "renew", "recoi", "recla",

"retri", "regra", "reget", "reapo",

"reboo", "reset"], ["dodge", "elude",

"shirk", "escap", "hide", "evade", "flee",

"duck", "ditch", "evite"], ["filer",

"files", "rasps", "grind", "blade",

"sawer", "tool", "sharp", "knife",

"metal"], ["yearn", "long", "ache",

"crave", "desir", "need", "want", "thirst",

"hunger", "lust"]]}, {"state": [["b", "e",

"b", "o", "p"], ["u", "r", "e", "n", "a"],

["f", "r", "i", "a", "r"], ["f", "o", "n",

"g", "e"], ["o", "r", "g", "a", "l"]],

"horizontal_clues": [["bebop", "jazzy",

"music", "salsa", "swing", "blues",

"riffs", "drums", "horns", "notes"],

["senna", "urena", "herbs", "flora",

"mints", "trees", "leaves", "oils",

"spice", "lavas"], ["monk", "friar", "nun",

"saint", "clerk", "deity", "mystic",

"faith", "pious", "sacra"], ["fetch",

"carry", "fonge", "take", "seize", "hold",

"grab", "earn", "gain", "yield"], ["tart",

"argal", "orgal", "lemon", "sours",

"wines", "taste", "tangs", "zesty",

"acid"]], "vertical_clues": [["buffo",

"clown", "actor", "joker", "wit", "humor",

"silly", "gag", "role", "fool"], ["error",

"fault", "flaw", "slip", "oops", "blips",

"bugs", "glitch", "bugs", "boob"],

["being", "alive", "human", "being",

"exist", "life", "creed", "soul", "love",

"kind"], ["fishy", "onaga", "ruby",

"salmo", "tuna", "sushi", "prawn", "trout",

"shrim", "codex"], ["dress", "appar",

"parel", "gowns", "style", "drape",

"shirts", "veils", "outfi", "apron"]]}]

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Listing 8: crosswords goal states.jsonl 1 [{"state": [[null, null, null, null, null],

["m", "o", "t", "o", "r"], ["a", "r", "t",

"s", "y"], ["s", "a", "l", "l", "e"], ["s",

"l", "e", "e", "r"]], "horizontal_clues":

[["tasks", "goals", "plans", "agend",

"chores", "works", "deeds", "items",

"lists", "brief"], ["motor", "power",

"drive", "diesel", "steam", "pumps",

"crank", "gears", "turbn", "motor"],

["grand", "artsy", "showy", "ornate",

"fancy", "vain", "proud", "vogue", "swank",

"luxus"], ["venue", "salle", "forum",

"atria", "lobby", "parls", "court",

"malls", "mall", "lobby"], ["jeer",

"scoff", "sleer", "deris", "sneer",

"scorn", "derid", "gibes", "gibed",

"flout"]], "vertical_clues": [["amass",

"stack", "hoard", "pile", "store", "heaps",

"massy", "gathe", "lumps", "mound"],

["nilga", "goral", "eland", "lepus",

"gazal", "kudu", "oryx", "gnu", "imps",

"carb"], ["scheme", "design", "ettle",

"nettle", "sting", "wiles", "plans",

"ideas", "plots", "cocks"], ["spout",

"nosle", "snout", "mouth", "nostr",

"ports", "inlet", "vents", "outlt",

"beaks"], ["drier", "arid", "sere",

"parch", "dryer", "wring", "drear", "sear",

"pall", "lack"]]}, {"state": [[null, null,

null, null, null], ["r", "e", "v", "i",

"e"], ["i", "g", "a", "l", "a"], ["s", "e",

"d", "e", "r"], ["e", "t", "e", "r", "n"]],

"horizontal_clues": [["parch", "dryup",

"arefy", "wring", "suckd", "wizen",

"desic", "evapo", "scald", "toast"],

["excel", "revie", "beat", "top", "best",

"rise", "win", "lead", "rule", "boss"],

["igala", "tribe", "people", "race",

"ethni", "nation", "yorub", "niger",

"triba", "tribu"], ["seder", "meal",

"food", "feast", "dine", "dish", "supper",

"banqu", "treat", "fetes"], ["eterl",

"etern", "everl", "forev", "immor",

"endur", "const", "perma", "durab",

"timeless"]], "vertical_clues": [["arise",

"climb", "soar", "ascen", "mount", "leaps",

"scale", "clamb", "steps", "jump"],

["regain", "renew", "recoi", "recla",

"retri", "regra", "reget", "reapo",

"reboo", "reset"], ["dodge", "elude",

"shirk", "escap", "hide", "evade", "flee",

"duck", "ditch", "evite"], ["filer",

"files", "rasps", "grind", "blade",

"sawer", "tool", "sharp", "knife",

"metal"], ["yearn", "long", "ache",

"crave", "desir", "need", "want", "thirst",

"hunger", "lust"]]}, {"state": [[null,

null, null, null, null], ["u", "r", "e",

"n", "a"], ["f", "r", "i", "a", "r"], ["f",

"o", "n", "g", "e"], ["o", "r", "g", "a",

"l"]], "horizontal_clues": [["bebop",

"jazzy", "music", "salsa", "swing",

"blues", "riffs", "drums", "horns",

"notes"], ["senna", "urena", "herbs",

"flora", "mints", "trees", "leaves",

"oils", "spice", "lavas"], ["monk",

"friar", "nun", "saint", "clerk", "deity",

"mystic", "faith", "pious", "sacra"],

["fetch", "carry", "fonge", "take",

"seize", "hold", "grab", "earn", "gain",

"yield"], ["tart", "argal", "orgal",

"lemon", "sours", "wines", "taste",

"tangs", "zesty", "acid"]],

"vertical_clues": [["buffo", "clown",

"actor", "joker", "wit", "humor", "silly",

"gag", "role", "fool"], ["error", "fault",

"flaw", "slip", "oops", "blips", "bugs",

"glitch", "bugs", "boob"], ["being",

"alive", "human", "being", "exist", "life",

"creed", "soul", "love", "kind"], ["fishy",

"onaga", "ruby", "salmo", "tuna", "sushi",

"prawn", "trout", "shrim", "codex"],

["dress", "appar", "parel", "gowns",

"style", "drape", "shirts", "veils",

"outfi", "apron"]]}]

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Listing 9: crosswords non goal states.jsonl

Successor Unit Test Successor unit test cases are stored
in a jsonl file. The test cases used are depicted in Listing 10.

1 [

2 {

3 "state": [[null, null, "e", null,

null], ["m", "o", "t", "o", "r"],

[null, null, "t", null, null],

[null, null, "l", null, null],

[null, null, "e", null, null]],

↪→
↪→
↪→
↪→

4 "successors": [

5 [["a", "g", "e", "n", "d"], ["m",

"o", "t", "o", "r"], [null,

null, "t", null, null], [null,

null, "l", null, null], [null,

null, "e", null, null]],

↪→
↪→
↪→
↪→

6 [["d", "e", "e", "d", "s"], ["m",

"o", "t", "o", "r"], [null,

null, "t", null, null], [null,

null, "l", null, null], [null,

null, "e", null, null]],

↪→
↪→
↪→
↪→

7 [["i", "t", "e", "m", "s"], ["m",

"o", "t", "o", "r"], [null,

null, "t", null, null], [null,

null, "l", null, null], [null,

null, "e", null, null]],

↪→
↪→
↪→
↪→

8 [[null, null, "e", null, null],

["m", "o", "t", "o", "r"],

["a", "r", "t", "s", "y"],

[null, null, "l", null, null],

[null, null, "e", null, null]],

↪→
↪→
↪→
↪→

9 [[null, null, "e", null, null],

["m", "o", "t", "o", "r"],

[null, null, "t", null, null],

["s", "a", "l", "l", "e"],

[null, null, "e", null, null]],

↪→
↪→
↪→
↪→

10 [[null, null, "e", null, null],

["m", "o", "t", "o", "r"],

[null, null, "t", null, null],

["m", "a", "l", "l", "s"],

[null, null, "e", null, null]],

↪→
↪→
↪→
↪→

11 [[null, null, "e", null, null],

["m", "o", "t", "o", "r"],

[null, null, "t", null, null],

[null, null, "l", null, null],

["s", "l", "e", "e", "r"]],

↪→
↪→
↪→
↪→

12 [[null, null, "e", null, null],

["m", "o", "t", "o", "r"],

[null, null, "t", null, null],

[null, null, "l", null, null],

["s", "n", "e", "e", "r"]],

↪→
↪→
↪→
↪→

13 [["a", null, "e", null, null],

["m", "o", "t", "o", "r"],

["a", null, "t", null, null],

["s", null, "l", null, null],

["s", null, "e", null, null]],

↪→
↪→
↪→
↪→

14 [[null, "g", "e", null, null],

["m", "o", "t", "o", "r"],

[null, "r", "t", null, null],

[null, "a", "l", null, null],

[null, "l", "e", null, null]],

↪→
↪→
↪→
↪→

15 [[null, null, "e", "n", null],

["m", "o", "t", "o", "r"],

[null, null, "t", "s", null],

[null, null, "l", "l", null],

[null, null, "e", "e", null]],

↪→
↪→
↪→
↪→

16 [[null, null, "e", "m", null],

["m", "o", "t", "o", "r"],

[null, null, "t", "u", null],

[null, null, "l", "t", null],

[null, null, "e", "h", null]],

↪→
↪→
↪→
↪→

17 [[null, null, "e", "n", null],

["m", "o", "t", "o", "r"],

[null, null, "t", "s", null],

[null, null, "l", "t", null],

[null, null, "e", "r", null]],

↪→
↪→
↪→
↪→

18 [[null, null, "e", "p", null],

["m", "o", "t", "o", "r"],

[null, null, "t", "r", null],

[null, null, "l", "t", null],

[null, null, "e", "s", null]],

↪→
↪→
↪→
↪→

19 [[null, null, "e", null, "d"],

["m", "o", "t", "o", "r"],

[null, null, "t", null, "i"],

[null, null, "l", null, "e"],

[null, null, "e", null, "r"]],

↪→
↪→
↪→
↪→

20 [[null, null, "e", null, "d"],

["m", "o", "t", "o", "r"],

[null, null, "t", null, "y"],

[null, null, "l", null, "e"],

[null, null, "e", null, "r"]],

↪→
↪→
↪→
↪→

21 [[null, null, "e", null, "w"],

["m", "o", "t", "o", "r"],

[null, null, "t", null, "i"],

[null, null, "l", null, "n"],

[null, null, "e", null, "g"]],

↪→
↪→
↪→
↪→

22 [[null, null, "e", null, "d"],

["m", "o", "t", "o", "r"],

[null, null, "t", null, "e"],

[null, null, "l", null, "a"],

[null, null, "e", null, "r"]]

↪→
↪→
↪→
↪→

23],

24 "horizontal_clues": [["tasks", "goals",

"plans", "agend", "chores",

"works", "deeds", "items", "lists",

"brief"], ["motor", "power",

"drive", "diesel", "steam",

"pumps", "crank", "gears", "turbn",

"motor"], ["grand", "artsy",

"showy", "ornate", "fancy", "vain",

"proud", "vogue", "swank",

"luxus"], ["venue", "salle",

"forum", "atria", "lobby", "parls",

"court", "malls", "mall", "lobby"],

["jeer", "scoff", "sleer", "deris",

"sneer", "scorn", "derid", "gibes",

"gibed", "flout"]],

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

25 "vertical_clues": [["amass", "stack",

"hoard", "pile", "store", "heaps",

"massy", "gathe", "lumps",

"mound"], ["nilga", "goral",

"eland", "lepus", "gazal", "kudu",

"oryx", "gnu", "imps", "carb"],

["scheme", "design", "ettle",

"nettle", "sting", "wiles",

"plans", "ideas", "plots",

"cocks"], ["spout", "nosle",

"snout", "mouth", "nostr", "ports",

"inlet", "vents", "outlt",

"beaks"], ["drier", "arid", "sere",

"parch", "dryer", "wring", "drear",

"sear", "pall", "lack"]]}]

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

26 [

27 {

28 "state": [[null, null, "e", null,

null], ["r", "e", "v", "i", "e"],

[null, null, "a", null, null],

[null, null, "d", null, null],

[null, null, "e", null, null]],

↪→
↪→
↪→
↪→

29 "successors": [

30 [["a", "r", "e", "f", "y"], ["r",

"e", "v", "i", "e"], [null,

null, "a", null, null], [null,

null, "d", null, null], [null,

null, "e", null, null]],

↪→
↪→
↪→
↪→

31 [[null, null, "e", null, null],

["r", "e", "v", "i", "e"],

["i", "g", "a", "l", "a"],

[null, null, "d", null, null],

[null, null, "e", null, null]],

↪→
↪→
↪→
↪→

32 [[null, null, "e", null, null],

["r", "e", "v", "i", "e"],

[null, null, "a", null, null],

["s", "e", "d", "e", "r"],

[null, null, "e", null, null]],

↪→
↪→
↪→
↪→

33 [[null, null, "e", null, null],

["r", "e", "v", "i", "e"],

[null, null, "a", null, null],

[null, null, "d", null, null],

["e", "t", "e", "r", "l"]],

↪→
↪→
↪→
↪→

34 [[null, null, "e", null, null],

["r", "e", "v", "i", "e"],

[null, null, "a", null, null],

[null, null, "d", null, null],

["e", "t", "e", "r", "n"]],

↪→
↪→
↪→
↪→

35 [[null, null, "e", null, null],

["r", "e", "v", "i", "e"],

[null, null, "a", null, null],

[null, null, "d", null, null],

["e", "v", "e", "r", "l"]],

↪→
↪→
↪→
↪→

36 [["a", null, "e", null, null],

["r", "e", "v", "i", "e"],

["i", null, "a", null, null],

["s", null, "d", null, null],

["e", null, "e", null, null]],

↪→
↪→
↪→
↪→

37 [[null, "r", "e", null, null],

["r", "e", "v", "i", "e"],

[null, "n", "a", null, null],

[null, "e", "d", null, null],

[null, "w", "e", null, null]],

↪→
↪→
↪→
↪→

38 [[null, "r", "e", null, null],

["r", "e", "v", "i", "e"],

[null, "c", "a", null, null],

[null, "o", "d", null, null],

[null, "i", "e", null, null]],

↪→
↪→
↪→
↪→

39 [[null, "r", "e", null, null],

["r", "e", "v", "i", "e"],

[null, "c", "a", null, null],

[null, "l", "d", null, null],

[null, "a", "e", null, null]],

↪→
↪→
↪→
↪→

40 [[null, "r", "e", null, null],

["r", "e", "v", "i", "e"],

[null, "t", "a", null, null],

[null, "r", "d", null, null],

[null, "i", "e", null, null]],

↪→
↪→
↪→
↪→

41 [[null, "r", "e", null, null],

["r", "e", "v", "i", "e"],

[null, "g", "a", null, null],

[null, "r", "d", null, null],

[null, "a", "e", null, null]],

↪→
↪→
↪→
↪→

42 [[null, "r", "e", null, null],

["r", "e", "v", "i", "e"],

[null, "g", "a", null, null],

[null, "e", "d", null, null],

[null, "t", "e", null, null]],

↪→
↪→
↪→
↪→

43 [[null, "r", "e", null, null],

["r", "e", "v", "i", "e"],

[null, "a", "a", null, null],

[null, "p", "d", null, null],

[null, "o", "e", null, null]],

↪→
↪→
↪→
↪→

44 [[null, "r", "e", null, null],

["r", "e", "v", "i", "e"],

[null, "b", "a", null, null],

[null, "o", "d", null, null],

[null, "o", "e", null, null]],

↪→
↪→
↪→
↪→

45 [[null, "r", "e", null, null],

["r", "e", "v", "i", "e"],

[null, "s", "a", null, null],

[null, "e", "d", null, null],

[null, "t", "e", null, null]],

↪→
↪→
↪→
↪→

46 [[null, null, "e", "f", null],

["r", "e", "v", "i", "e"],

[null, null, "a", "l", null],

[null, null, "d", "e", null],

[null, null, "e", "r", null]],

↪→
↪→
↪→
↪→

47 [[null, null, "e", "f", null],

["r", "e", "v", "i", "e"],

[null, null, "a", "l", null],

[null, null, "d", "e", null],

[null, null, "e", "s", null]],

↪→
↪→
↪→
↪→

48 [[null, null, "e", null, "y"],

["r", "e", "v", "i", "e"],

[null, null, "a", null, "a"],

[null, null, "d", null, "r"],

[null, null, "e", null, "n"]],

↪→
↪→
↪→
↪→

49 [[null, null, "e", null, "d"],

["r", "e", "v", "i", "e"],

[null, null, "a", null, "s"],

[null, null, "d", null, "i"],

[null, null, "e", null, "r"]]

↪→
↪→
↪→
↪→

50],

51 "horizontal_clues": [["parch", "dryup",

"arefy", "wring", "suckd", "wizen",

"desic", "evapo", "scald",

"toast"], ["excel", "revie",

"beat", "top", "best", "rise",

"win", "lead", "rule", "boss"],

["igala", "tribe", "people",

"race", "ethni", "nation", "yorub",

"niger", "triba", "tribu"],

["seder", "meal", "food", "feast",

"dine", "dish", "supper", "banqu",

"treat", "fetes"], ["eterl",

"etern", "everl", "forev", "immor",

"endur", "const", "perma", "durab",

"timeless"]],

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

52 "vertical_clues": [["arise", "climb",

"soar", "ascen", "mount", "leaps",

"scale", "clamb", "steps", "jump"],

["regain", "renew", "recoi",

"recla", "retri", "regra", "reget",

"reapo", "reboo", "reset"],

["dodge", "elude", "shirk",

"escap", "hide", "evade", "flee",

"duck", "ditch", "evite"],

["filer", "files", "rasps",

"grind", "blade", "sawer", "tool",

"sharp", "knife", "metal"],

["yearn", "long", "ache", "crave",

"desir", "need", "want", "thirst",

"hunger", "lust"]]

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

53 }

54]

55 [

56 {

57 "state": [[null, null, "b", null,

null], ["u", "r", "e", "n", "a"],

[null, null, "i", null, null],

[null, null, "n", null, null],

[null, null, "g", null, null]],

↪→
↪→
↪→
↪→

58 "successors": [

59 [["b", "e", "b", "o", "p"], ["u",

"r", "e", "n", "a"], [null,

null, "i", null, null], [null,

null, "n", null, null], [null,

null, "g", null, null]],

↪→
↪→
↪→
↪→

60 [[null, null, "b", null, null],

["u", "r", "e", "n", "a"],

["f", "r", "i", "a", "r"],

[null, null, "n", null, null],

[null, null, "g", null, null]],

↪→
↪→
↪→
↪→

61 [[null, null, "b", null, null],

["u", "r", "e", "n", "a"],

["s", "a", "i", "n", "t"],

[null, null, "n", null, null],

[null, null, "g", null, null]],

↪→
↪→
↪→
↪→

62 [[null, null, "b", null, null],

["u", "r", "e", "n", "a"],

["d", "e", "i", "t", "y"],

[null, null, "n", null, null],

[null, null, "g", null, null]],

↪→
↪→
↪→
↪→

63 [[null, null, "b", null, null],

["u", "r", "e", "n", "a"],

["f", "a", "i", "t", "h"],

[null, null, "n", null, null],

[null, null, "g", null, null]],

↪→
↪→
↪→
↪→

64 [[null, null, "b", null, null],

["u", "r", "e", "n", "a"],

[null, null, "i", null, null],

["f", "o", "n", "g", "e"],

[null, null, "g", null, null]],

↪→
↪→
↪→
↪→

65 [[null, null, "b", null, null],

["u", "r", "e", "n", "a"],

[null, null, "i", null, null],

[null, null, "n", null, null],

["a", "r", "g", "a", "l"]],

↪→
↪→
↪→
↪→

66 [[null, null, "b", null, null],

["u", "r", "e", "n", "a"],

[null, null, "i", null, null],

[null, null, "n", null, null],

["o", "r", "g", "a", "l"]],

↪→
↪→
↪→
↪→

67 [["b", null, "b", null, null],

["u", "r", "e", "n", "a"],

["f", null, "i", null, null],

["f", null, "n", null, null],

["o", null, "g", null, null]],

↪→
↪→
↪→
↪→

68 [["h", null, "b", null, null],

["u", "r", "e", "n", "a"],

["m", null, "i", null, null],

["o", null, "n", null, null],

["r", null, "g", null, null]],

↪→
↪→
↪→
↪→

69 [[null, "e", "b", null, null],

["u", "r", "e", "n", "a"],

[null, "r", "i", null, null],

[null, "o", "n", null, null],

[null, "r", "g", null, null]],

↪→
↪→
↪→
↪→

70 [[null, null, "b", "o", null],

["u", "r", "e", "n", "a"],

[null, null, "i", "a", null],

[null, null, "n", "g", null],

[null, null, "g", "a", null]],

↪→
↪→
↪→
↪→

71 [[null, null, "b", null, "p"],

["u", "r", "e", "n", "a"],

[null, null, "i", null, "r"],

[null, null, "n", null, "e"],

[null, null, "g", null, "l"]]

↪→
↪→
↪→
↪→

72],

73 "horizontal_clues": [["bebop", "jazzy",

"music", "salsa", "swing", "blues",

"riffs", "drums", "horns",

"notes"], ["senna", "urena",

"herbs", "flora", "mints", "trees",

"leaves", "oils", "spice",

"lavas"], ["monk", "friar", "nun",

"saint", "clerk", "deity",

"mystic", "faith", "pious",

"sacra"], ["fetch", "carry",

"fonge", "take", "seize", "hold",

"grab", "earn", "gain", "yield"],

["tart", "argal", "orgal", "lemon",

"sours", "wines", "taste", "tangs",

"zesty", "acid"]],

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

74 "vertical_clues": [["buffo", "clown",

"actor", "joker", "wit", "humor",

"silly", "gag", "role", "fool"],

["error", "fault", "flaw", "slip",

"oops", "blips", "bugs", "glitch",

"bugs", "boob"], ["being", "alive",

"human", "being", "exist", "life",

"creed", "soul", "love", "kind"],

["fishy", "onaga", "ruby", "salmo",

"tuna", "sushi", "prawn", "trout",

"shrim", "codex"], ["dress",

"appar", "parel", "gowns", "style",

"drape", "shirts", "veils",

"outfi", "apron"]]

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

75 }

76]

Listing 10: crossword successors.jsonl

Partial Successor Soundness Test

def validate_transition_complex(s, t):

def count_none(s):

ns = 0

for r in s:

ns += len([c for c in r if c is None])

return ns

ns = count_none(s)

nt = count_none(t)

feedback = ""

if ns < nt:

More unknown

feedback += prettyprint("Successor state has

less filled cells than the parent state.")↪→
elif ns == nt:

Same unknown

feedback += prettyprint("Successor state has the

same number of filled cells as the parent

state.")

↪→
↪→

elif ns - nt > 5:

Way too many less unknown

feedback += prettyprint("Successor state has

more than 5 filled cells more than the

parent state.")

↪→
↪→

else:

return True, ""

feedback += prettyprint("Let's think step by step.

First, think what you did wrong.")↪→
feedback += prettyprint("Then, think of in what ways

successor state should be different from the

parent state.")

↪→
↪→
feedback += prettyprint("Then, provide the complete

Python code for the revised successor function

that returns a list of successor states.")

↪→
↪→
feedback += prettyprint("Remember how you fixed the

previous mistakes, if any. Keep the same

function signature.")

↪→
↪→
return False, feedback

A.4 ProntoQA
Goal Unit Test Goal unit test cases are stored in two jsonl
files, one for goal states and one for non-goal states.

Listing 11: prontoqa goal states.jsonl

1 {"state": ["painted lady", "bony"], "goal": "bony"}

2 {"state": ["mersenne prime", "real"], "goal": "real"}

3 {"state": ["lepidopteran", "small"], "goal": "small"}

Listing 12: prontoqa non goal states.jsonl

1 {"state": ["painted lady"], "goal": "not-bony"}

2 {"state": ["mersenne prime"], "goal": "not-real"}

3 {"state": ["lepidopteran"], "goal": "not-small"}

Successor Unit Test Successor unit test cases are stored
in a jsonl file. The test cases used are depicted in Listing 13.

1 {"state": ["painted lady"], "rules":

[["arthropod", "protostome"],

["lepidopteran", "insect"], ["painted

lady", "butterfly"], ["insect",

"arthropod"], ["invertebrate", "animal"],

["arthropod", "not-bony"], ["protostome",

"invertebrate"], ["whale", "bony"],

["butterfly", "lepidopteran"], ["animal",

"multicellular"], ["insect",

"six-legged"]], "successors": [["painted

lady", "butterfly"]]}

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

2 {"state": ["mersenne prime"], "rules":

[["integer", "real number"], ["prime

number", "natural number"], ["real number",

"number"], ["mersenne prime", "prime

number"], ["mersenne prime",

"not-composite"], ["natural number",

"integer"], ["imaginary number",

"not-real"], ["real number", "real"],

["prime number", "not-composite"],

["natural number", "positive"]],

"successors": [["prime number", "mersenne

prime"], ["not-composite", "mersenne

prime"]]}

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

3 {"state": ["lepidopteran"], "rules":

[["lepidopteran", "insect"], ["arthropod",

"small"], ["insect", "arthropod"],

["whale", "not-small"], ["invertebrate",

"animal"], ["butterfly", "lepidopteran"],

["arthropod", "invertebrate"], ["animal",

"multicellular"], ["insect",

"six-legged"]], "successors": [["insect",

"lepidopteran"]]}

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Listing 13: prontoqa successors.jsonl

Partial Successor Soundness Test
def validate_transition_complex(s, t):

if s == t:
return True, ""

elif len(t) - len(s) != 1:
feedback = prettyprint("Invalid

transition: length mismatch
- the length of a successor
must be one more than the
parent.")

↪→

↪→

↪→

↪→

feedback += prettyprint("Let's
think step by step. First
think through in words why
the successor function
produced a successor that
had a length that was not
exactly one more than the
parent. Then provide the
complete Python code for
the revised successor
function that ensures the
length of a successor is
exactly one more than the
parent.")

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

feedback +=
prettyprint("Remember how
you fixed the previous
mistakes, if any. Keep the
same function signature.")

↪→

↪→

↪→

↪→

return False, feedback
return True, ""

A.5 Sokoban
Goal Unit Test Goal unit test cases are stored in two jsonl
files, one for goal states and one for non-goal states.

Listing 14: sokoban goal states.jsonl

1 {"state": {"at-player": [5, 3], "at-stone":

[[3, 3], [4, 3]]}, "grid": [[1, 1, 1, 1, 1,

1], [1, 0, 0, 0, 0, 1], [1, 0, 1, 0, 0, 1],

[1, 0, 0, 2, 0, 1], [1, 0, 1, 2, 1, 1], [1,

0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0]]}

↪→
↪→
↪→
↪→

2 {"state": {"at-player": [5, 2], "at-stone":

[[3, 2], [4, 2]]}, "grid": [[1, 0, 1, 1, 1,

1, 1], [0, 0, 1, 0, 0, 0, 1], [1, 1, 1, 0,

0, 0, 1], [1, 0, 2, 0, 0, 0, 1], [1, 0, 2,

1, 0, 0, 1], [1, 0, 0, 1, 0, 0, 1], [1, 1,

1, 1, 1, 1, 1]]}

↪→
↪→
↪→
↪→
↪→

3 {"state": {"at-player": [4, 4], "at-stone":

[[2, 2], [3, 3]]}, "grid": [[1, 1, 1, 1, 0,

0, 0, 0], [1, 0, 0, 1, 1, 0, 0, 0], [1, 0,

2, 0, 1, 1, 1, 1], [1, 0, 0, 2, 1, 0, 0,

1], [1, 1, 0, 0, 0, 0, 0, 1], [0, 1, 1, 1,

0, 0, 0, 1], [0, 0, 0, 1, 0, 1, 0, 1], [0,

0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 1, 1, 1,

1]]}

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Listing 15: sokoban non goal states.jsonl

1 {"state": {"at-player": [5, 3], "at-stone":

[[3, 3], [4, 3]]}, "grid": [[1, 1, 1, 1, 1,

1], [1, 0, 0, 2, 0, 1], [1, 0, 1, 0, 0, 1],

[1, 0, 0, 0, 0, 1], [1, 0, 1, 2, 1, 1], [1,

0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0]]}

↪→
↪→
↪→
↪→

2 {"state": {"at-player": [5, 2], "at-stone":

[[3, 2], [4, 2]]}, "grid": [[1, 0, 1, 1, 1,

1, 1], [0, 0, 1, 0, 0, 0, 1], [1, 1, 1, 0,

0, 2, 1], [1, 0, 0, 0, 0, 0, 1], [1, 0, 0,

1, 0, 2, 1], [1, 0, 0, 1, 0, 0, 1], [1, 1,

1, 1, 1, 1, 1]]}

↪→
↪→
↪→
↪→
↪→

3 {"state": {"at-player": [4, 4], "at-stone":

[[2, 2], [3, 3]]}, "grid": [[1, 1, 1, 1, 0,

0, 0, 0], [1, 0, 0, 1, 1, 0, 0, 0], [1, 0,

0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 0, 0,

1], [1, 1, 0, 0, 0, 0, 0, 1], [0, 1, 1, 1,

2, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0, 1], [0,

0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 1, 1, 1,

1]]}

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Successor Unit Test Successor unit test cases are stored
in a jsonl file. The test cases used are depicted in Listing 16.

1 {"state": {"at-player": [5, 3], "at-stone":

[[3, 3], [4, 3]]}, "successors":

[{"at-player": [5, 2], "at-stone": [[3, 3],

[4, 3]]}], "grid": [[1, 1, 1, 1, 1, 1], [1,

0, 0, 2, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0,

0, 0, 0, 1], [1, 0, 1, 2, 1, 1], [1, 0, 0,

0, 1, 0], [1, 1, 1, 1, 1, 0]]}

↪→
↪→
↪→
↪→
↪→
↪→

2 {"state": {"at-player": [5, 2], "at-stone":

[[3, 2], [4, 2]]}, "successors":

[{"at-player": [5, 1], "at-stone": [[3, 2],

[4, 2]]}], "grid": [[1, 0, 1, 1, 1, 1, 1],

[0, 0, 1, 0, 0, 0, 1], [1, 1, 1, 0, 0, 2,

1], [1, 0, 0, 0, 0, 0, 1], [1, 0, 0, 1, 0,

2, 1], [1, 0, 0, 1, 0, 0, 1], [1, 1, 1, 1,

1, 1, 1]]}

↪→
↪→
↪→
↪→
↪→
↪→
↪→

3 {"state": {"at-player": [4, 4], "at-stone":

[[2, 2], [3, 3]]}, "successors":

[{"at-player": [5, 4], "at-stone": [[2, 2],

[3, 3]]}, {"at-player": [4, 3], "at-stone":

[[2, 2], [3, 3]]}, {"at-player": [4, 5],

"at-stone": [[2, 2], [3, 3]]}], "grid":

[[1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1,

0, 0, 0], [1, 0, 0, 0, 1, 1, 1, 1], [1, 0,

0, 0, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0,

1], [0, 1, 1, 1, 2, 2, 0, 1], [0, 0, 0, 1,

0, 1, 0, 1], [0, 0, 0, 1, 0, 0, 0, 1], [0,

0, 0, 1, 1, 1, 1, 1]]}

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

4 {"state": {"at-player": [5, 3], "at-stone":

[[5, 2], [4, 3]]}, "successors":

[{"at-player": [5, 2], "at-stone": [[5, 1],

[4, 3]]}], "grid": [[1, 1, 1, 1, 1, 1], [1,

0, 0, 2, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0,

0, 0, 0, 1], [1, 0, 1, 2, 1, 1], [1, 0, 0,

0, 1, 0], [1, 1, 1, 1, 1, 0]]}

↪→
↪→
↪→
↪→
↪→
↪→

Listing 16: sokoban successors.jsonl

Partial Successor Soundness Test
def validate_transition_complex(s, t):

locations = set(t['at-stone'])
if len(locations) <

len(t['at-stone']):↪→

feedback = prettyprint("Invalid
transition: multiple stones
at the same location.")

↪→

↪→

feedback += prettyprint("Let's
think step by step. First
think through in words why
the successor function
produced a successor that
has two stones at the same
location. Then provide the
complete Python code for
the revised successor
function that ensures that
in all successors all
stones are at different
locations.")

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

feedback +=
prettyprint("Remember how
you fixed the previous
mistakes, if any. Keep the
same function signature.")

↪→

↪→

↪→

↪→

return False, feedback
if t['at-player'] in locations:

feedback = prettyprint("Invalid
transition: a stone and the
player are at the same
location.")

↪→

↪→

↪→

feedback += prettyprint("Let's
think step by step. First
think through in words why
the successor function
produced a successor that
has a stone and the player
at the same location. Then
provide the complete Python
code for the revised
successor function that
ensures that in all
successors the player and
the stones are at different
locations.")

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

feedback +=
prettyprint("Remember how
you fixed the previous
mistakes, if any. Keep the
same function signature.")

↪→

↪→

↪→

↪→

return False, feedback
return True, ""

